33 research outputs found

    In Utero B Cell Responses to Plasmodium falciparum and Risk of Malaria during the First Year of Life.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Aspirin and antiplatelet treatments in cancer

    Full text link
    Abstract Platelets have been hypothesized to promote certain neoplastic malignancies; however, antiplatelet drugs are still not part of routine pharmacological cancer prevention and treatment protocols. Paracrine interactions between platelets and cancer cells have been implicated in potentiating the dissemination, survival within the circulation, and extravasation of cancer cells at distant sites of metastasis. Signals from platelets have also been suggested to confer epigenetic alterations, including upregulating oncoproteins in circulating tumor cells, and secretion of potent growth factors may play roles in promoting mitogenesis, angiogenesis, and metastatic outgrowth. Thrombocytosis remains a marker of poor prognosis in patients with solid tumors. Experimental data suggest that lowering of platelet count may reduce tumor growth and metastasis. On the basis of the mechanisms by which platelets could contribute to cancer growth and metastasis, it is conceivable that drugs reducing platelet count or platelet activation might attenuate cancer progression and improve outcomes. We will review select pharmacological approaches that inhibit platelets and may affect cancer development and propagation. We begin by presenting an overview of clinical cancer prevention and outcome studies with low-dose aspirin. We then review current nonclinical development of drugs targeted to platelet binding, activation, and count as potential mitigating agents in cancer.</jats:p

    Measuring Antibody Avidity To Plasmodium Falciparum Merozoite Antigens Using A Multiplex Immunoassay Approach

    No full text
    Abstract Background: Antibodies (Ab) play a significant role in immunity to Plasmodium falciparum malaria. Usually, following repeated exposure to pathogens, affinity maturation and clonal selection take place, resulting in increased antibody avidity. However, some studies suggest affinity maturation may not take place to malaria antigens in endemic areas. Information on development of antibody avidity is confusing and conflicting, in part, because different techniques have been used to measure avidity. Today, bead-based multiplex immunoassays (MIA) are routinely used to simultaneously quantitate antibody levels to multiple antigens. This study evaluated the feasibility of developing an avidity MIA with 5 merozoite antigens (AMA1, EBA-175, MSP1-42, MSP2, MSP3) that used a single chaotropic concentration. Methods: The most common ELISA protocols that used the chaotropic reagents guanidine HCl (GdHCl), urea, and ammonium thiocyanate (NH4SCN) were adapted to a multiplex MIA format. Then, different concentrations of chaotropes and incubation times were compared and results were expressed as an Avidity Index (AI), i.e., percentage of antibody remaining bound in the presence of chaotrope. Experiments were conducted to i) identify the assay with the widest range of AI (discriminatory power), ii) determine the amount of chaotrope needed to release 50% of bound Ab using plasma from adults and infants, and iii) evaluate assay repeatability. Results: Overall, 4M GdHCl and 8M urea were weaker chaotropes than 3M NH4SCN. For example, they failed to release significant amounts of Ab bound to MSP1-42 in adult plasma samples; whereas, a range of AI values was obtained with NH4SCN. Titration of NH4SCN revealed that 2M urea gave the widest range of AI for the 5 antigens. Binding studies using plasma from 40 adults and 57 one-year old infants in Cameroon showed that 2.1M ± 0.32 (mean ± SD) NH4SCN (adults) and 1.8M ± 0.23M released 50% of bound Ab from the merozoite antigens. The final avidity multiplex assay was highly repeatable. Conclusions. An avidity MIA is feasible for the 5 merozoite antigens that uses a single concentration (2M) of NH4SCN. The assay provides a simple method to quickly obtain information about Ab quantity and quality in the acquisition of immunity to malaria in endemic populations.</jats:p

    Measuring antibody avidity to Plasmodium falciparum merozoite antigens using a multiplex immunoassay approach

    No full text
    Abstract Background Antibodies (Ab) play a significant role in immunity to Plasmodium falciparum malaria. Usually, following repeated exposure to pathogens, affinity maturation and clonal selection take place, resulting in increased antibody avidity. However, some studies suggest affinity maturation may not occur to malaria antigens in endemic areas. Information on development of antibody avidity is confusing and conflicting, in part, because different techniques have been used to measure avidity. Today, bead-based multiplex immunoassays (MIA) are routinely used to simultaneously quantitate antibody levels to multiple antigens. This study evaluated the feasibility of developing an avidity MIA with 5 merozoite antigens (AMA1, EBA-175, MSP1-42, MSP2, MSP3) that uses a single chaotropic concentration. Methods The most common ELISA protocols that used the chaotropic reagents guanidine HCl (GdHCl), urea, and ammonium thiocyanate (NH4SCN) were adapted to a multiplex MIA format. Then, different concentrations of chaotropes and incubation times were compared and results were expressed as an Avidity Index (AI), i.e., percentage of antibody remaining bound in the presence of chaotrope. Experiments were conducted to (i) identify the assay with the widest range of AI (discriminatory power), (ii) determine the amount of chaotrope needed to release 50% of bound Ab using plasma from adults and infants, and (iii) evaluate assay repeatability. Results Overall, 4 M GdHCl and 8 M urea were weaker chaotropes than 3 M NH4SCN. For example, they failed to release significant amounts of Ab bound to MSP1-42 in adult plasma samples; whereas, a range of AI values was obtained with NH4SCN. Titration of NH4SCN revealed that 2 M NH4SCN gave the widest range of AI for the 5 antigens. Binding studies using plasma from 40 adults and 57 1-year old infants in Cameroon showed that 2.1 M ± 0.32 (mean ± SD) NH4SCN (adults) and 1.8 M ± 0.23 M (infants) released 50% of bound Ab from the merozoite antigens. Conclusions An avidity MIA is feasible for the 5 merozoite antigens that uses a single concentration (2 M) of NH4SCN. The assay provides a simple method to quickly obtain information about Ab quantity and quality in the acquisition of immunity to malaria in endemic populations. </jats:sec

    Measuring Antibody Avidity to Plasmodium Falciparum Merozoite Antigens Using a Multiplex Immunoassay Approach

    No full text
    Abstract Background: Antibodies (Ab) play a significant role in immunity to Plasmodium falciparum malaria. Usually, following repeated exposure to pathogens, affinity maturation and clonal selection take place, resulting in increased antibody avidity. However, some studies suggest affinity maturation may not occur to malaria antigens in endemic areas. Information on development of antibody avidity is confusing and conflicting, in part, because different techniques have been used to measure avidity. Today, bead-based multiplex immunoassays (MIA) are routinely used to simultaneously quantitate antibody levels to multiple antigens. This study evaluated the feasibility of developing an avidity MIA with 5 merozoite antigens (AMA1, EBA-175, MSP1-42, MSP2, MSP3) that uses a single chaotropic concentration.Methods: The most common ELISA protocols that used the chaotropic reagents guanidine HCl (GdHCl), urea, and ammonium thiocyanate (NH4SCN) were adapted to a multiplex MIA format. Then, different concentrations of chaotropes and incubation times were compared and results were expressed as an Avidity Index (AI), i.e., percentage of antibody remaining bound in the presence of chaotrope. Experiments were conducted to i) identify the assay with the widest range of AI (discriminatory power), ii) determine the amount of chaotrope needed to release 50% of bound Ab using plasma from adults and infants, and iii) evaluate assay repeatability. Results: Overall, 4M GdHCl and 8M urea were weaker chaotropes than 3M NH4SCN. For example, they failed to release significant amounts of Ab bound to MSP1-42 in adult plasma samples; whereas, a range of AI values was obtained with NH4SCN. Titration of NH4SCN revealed that 2M NH4SCN gave the widest range of AI for the 5 antigens. Binding studies using plasma from 40 adults and 57 one-year old infants in Cameroon showed that 2.1M ± 0.32 (mean ± SD) NH4SCN (adults) and 1.8M ± 0.23M (infants) released 50% of bound Ab from the merozoite antigens. Conclusions. An avidity MIA is feasible for the 5 merozoite antigens that uses a single concentration (2M) of NH4SCN. The assay provides a simple method to quickly obtain information about Ab quantity and quality in the acquisition of immunity to malaria in endemic populations.</jats:p

    Measuring Antibody Avidity to Plasmodium Falciparum Merozoite Antigens Using a Multiplex Immunoassay Approach

    No full text
    Abstract Background: Antibodies (Ab) play a significant role in immunity to Plasmodium falciparum malaria. Usually, following repeated exposure to pathogens, affinity maturation and clonal selection take place, resulting in increased antibody avidity. However, some studies suggest affinity maturation may not occur to malaria antigens in endemic areas. Information on development of antibody avidity is confusing and conflicting, in part, because different techniques have been used to measure avidity. Today, bead-based multiplex immunoassays (MIA) are routinely used to simultaneously quantitate antibody levels to multiple antigens. This study evaluated the feasibility of developing an avidity MIA with 5 merozoite antigens (AMA1, EBA-175, MSP1-42, MSP2, MSP3) that uses a single chaotropic concentration.Methods: The most common ELISA protocols that used the chaotropic reagents guanidine HCl (GdHCl), urea, and ammonium thiocyanate (NH4SCN) were adapted to a multiplex MIA format. Then, different concentrations of chaotropes and incubation times were compared and results were expressed as an Avidity Index (AI), i.e., percentage of antibody remaining bound in the presence of chaotrope. Experiments were conducted to i) identify the assay with the widest range of AI (discriminatory power), ii) determine the amount of chaotrope needed to release 50% of bound Ab using plasma from adults and infants, and iii) evaluate assay repeatability. Results: Overall, 4M GdHCl and 8M urea were weaker chaotropes than 3M NH4SCN. For example, they failed to release significant amounts of Ab bound to MSP1-42 in adult plasma samples; whereas, a range of AI values was obtained with NH4SCN. Titration of NH4SCN revealed that 2M NH4SCN gave the widest range of AI for the 5 antigens. Binding studies using plasma from 40 adults and 57 one-year old infants in Cameroon showed that 2.1M ± 0.32 (mean ± SD) NH4SCN (adults) and 1.8M ± 0.23M (infants) released 50% of bound Ab from the merozoite antigens. Conclusions: An avidity MIA is feasible for the 5 merozoite antigens that uses a single concentration (2M) of NH4SCN. The assay provides a simple method to quickly obtain information about Ab quantity and quality in the acquisition of immunity to malaria in endemic populations.</jats:p
    corecore