156 research outputs found
The immediate early gene Egr3 Is required for hippocampal induction of Bdnf by electroconvulsive stimulation
Early growth response 3 (Egr3) is an immediate early gene (IEG) that is regulated downstream of a cascade of genes associated with risk for psychiatric disorders, and dysfunction of Egr3 itself has been implicated in schizophrenia, bipolar disorder, and depression. As an activity-dependent transcription factor, EGR3 is poised to regulate the neuronal expression of target genes in response to environmental events. In the current study, we sought to identify a downstream target of EGR3 with the goal of further elucidating genes in this biological pathway relevant for psychiatric illness risk. We used electroconvulsive stimulation (ECS) to induce high-level expression of IEGs in the brain, and conducted expression microarray to identify genes differentially regulated in the hippocampus of Egr3-deficient (-/-) mice compared to their wildtype (WT) littermates. Our results replicated previous work showing that ECS induces high-level expression of the brain-derived neurotrophic factor (Bdnf) in the hippocampus of WT mice. However, we found that this induction is absent in Egr3-/- mice. Quantitative real-time PCR (qRT-PCR) validated the microarray results (performed in males) and replicated the findings in two separate cohorts of female mice. Follow-up studies of activity-dependent Bdnf exons demonstrated that ECS-induced expression of both exons IV and VI requires Egr3. In situ hybridization demonstrated high-level cellular expression of Bdnf in the hippocampal dentate gyrus following ECS in WT, but not Egr3-/-, mice. Bdnf promoter analysis revealed eight putative EGR3 binding sites in the Bdnf promoter, suggesting a mechanism through which EGR3 may directly regulate Bdnf gene expression. These findings do not appear to result from a defect in the development of hippocampal neurons in Egr3-/- mice, as cell counts in tissue sections stained with anti-NeuN antibodies, a neuron-specific marker, did not differ between Egr3-/- and WT mice. In addition, Sholl analysis and counts of dendritic spines in golgi-stained hippocampal sections revealed no difference in dendritic morphology or synaptic spine density in Egr3-/-, compared to WT, mice. These findings indicate that Egr3 is required for ECS-induced expression of Bdnf in the hippocampus and suggest that Bdnf may be a downstream gene in our previously identified biologically pathway for psychiatric illness susceptibility.US National Institute of Mental Health [R01MH097803, R21MH113154]; Natural Sciences and Engineering Research Council of CanadaOpen access journal.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Identification of activity-induced Egr3-dependent genes reveals genes associated with DNA damage response and schizophrenia
Bioinformatics and network studies have identified the immediate early gene transcription factor early growth response 3 (EGR3) as a master regulator of genes differentially expressed in the brains of patients with neuropsychiatric illnesses ranging from schizophrenia and bipolar disorder to Alzheimer\u27s disease. However, few studies have identified and validated Egr3-dependent genes in the mammalian brain. We have previously shown that Egr3 is required for stress-responsive behavior, memory, and hippocampal long-term depression in mice. To identify Egr3-dependent genes that may regulate these processes, we conducted an expression microarray on hippocampi from wildtype (WT) and Egr3-/- mice following electroconvulsive seizure (ECS), a stimulus that induces maximal expression of immediate early genes including Egr3. We identified 69 genes that were differentially expressed between WT and Egr3-/- mice one hour following ECS. Bioinformatic analyses showed that many of these are altered in, or associated with, schizophrenia, including Mef2c and Calb2. Enrichr pathway analysis revealed the GADD45 (growth arrest and DNA-damage-inducible) family (Gadd45b, Gadd45g) as a leading group of differentially expressed genes. Together with differentially expressed genes in the AP-1 transcription factor family genes (Fos, Fosb), and the centromere organization protein Cenpa, these results revealed that Egr3 is required for activity-dependent expression of genes involved in the DNA damage response. Our findings show that EGR3 is critical for the expression of genes that are mis-expressed in schizophrenia and reveal a novel requirement for EGR3 in the expression of genes involved in activity-induced DNA damage response
Prognostic Factors and Survival in Pediatric and Adolescent Liposarcoma
Purpose. Liposarcoma is extremely rare in the pediatric population. To identify prognostic factors and determine treatment outcomes, we reviewed our institutional experience with pediatric liposarcoma. Methods. We retrospectively reviewed all pediatric patients (age < 22 years) with confirmed liposarcoma treated at Memorial Sloan-Kettering Cancer Center. Histologic subtype, tumor location, margin status, recurrence, and adjuvant therapy were analyzed and correlated with overall survival. Results. Thirtyfour patients (56% male) with a median age of 18.1 years were identified. Twenty-two (65%) had peripheral tumors and 12 (35%) had centrally located tumors. Histologically, 29 (85%) tumors were low grade, and 5 (15%) were high grade pleomorphic. Eleven (32%) had recurrent disease, 9 patients with central tumors and 2 patients with peripheral lesions. Eight deaths occurred, all in patients with central disease. Five-year overall survival was 78%, with a median follow-up time of 5.4 years (range, 0.3-30.3 years). Tumor grade (P = .003), histologic subtype (P = .01), and primary location (P < .001) all correlated with survival, as did stage (P < .001) and margin status (P = .001). Conclusions. Central location of the primary tumor, high tumor grade, and positive surgical margins are strongly correlated with poor survival in pediatric patients with liposarcoma
Recommended from our members
Using polygenic scores for identifying individuals at increased risk of substance use disorders in clinical and population samples
Genome-wide, polygenic risk scores (PRS) have emerged as a useful way to characterize genetic liability. There is growing evidence that PRS may prove useful for early identification of those at increased risk for certain diseases. The current potential of PRS for alcohol use disorders (AUD) remains an open question. Using data from both a population-based sample [the FinnTwin12 (FT12) study] and a high-risk sample [the Collaborative Study on the Genetics of Alcoholism (COGA)], we examined the association between PRSs derived from genome-wide association studies (GWASs) of (1) alcohol dependence/alcohol problems, (2) alcohol consumption, and (3) risky behaviors with AUD and other substance use disorder (SUD) criteria. These PRSs explain similar to 2.5-3.5% of the variance in AUD (across FT12 and COGA) when all PRSs are included in the same model. Calculations of area under the curve (AUC) show PRS provide only a slight improvement over a model with age, sex, and ancestral principal components as covariates. While individuals in the top 20, 10, and 5% of the PRS distribution had greater odds of having an AUD compared to the lower end of the continuum in both COGA and FT12, the point estimates at each threshold were statistically indistinguishable. Those in the top 5% reported greater levels of licit (alcohol and nicotine) and illicit (cannabis and opioid) SUD criteria. PRSs are associated with risk for SUD in independent samples. However, usefulness for identifying those at increased risk in their current form is modest, at best. Improvement in predictive ability will likely be dependent on increasing the size of well-phenotyped discovery samples.Peer reviewe
Exploring the relationship between polygenic risk for cannabis use, peer cannabis use, and the longitudinal course of cannabis involvement
Background and aims:
Few studies have explored how polygenic propensity to cannabis use unfolds across development, and no studies have yet examined this question in the context of environmental contributions such as peer cannabis use. Outlining the factors that contribute to progression from cannabis initiation to problem use over time may ultimately provide insights into mechanisms for targeted interventions. We sought to examine the relationships between polygenic liability for cannabis use, cannabis use trajectories across ages 12–30, and perceived peer cannabis use at ages 12–17.
Design:
Mixed effect logistic and linear regressions were used to examine associations between polygenic risk scores, cannabis use trajectory membership, and perceived peer cannabis use.
Setting:
USA
Participants:
From the Collaborative Study on the Genetics of Alcoholism (COGA) study, a cohort of 1,167 individuals aged 12–26 years at their baseline (i.e., first) interview.
Measurements:
Key measurements included lifetime cannabis use (yes/no), frequency of past 12-month cannabis use, maximum lifetime frequency of cannabis use, cannabis use disorder (using DSM-5 criteria), and perceived peer cannabis use. Polygenic risk scores (PRS) were created using summary statistics from a large (N = 162,082) genome-wide association study (GWAS) of cannabis use.
Three trajectories reflecting no/low (n=844), moderate (n=137) and high (n=186) use were identified. PRS were significantly associated with trajectory membership (p=0.002 – 0.006, maximum conditional R2 = 0.014, ORs = 1.40 – 1.49). Individuals who reported that most/all of their best friends used cannabis had significantly higher PRS than those who reported that none of their friends were users (OR = 1.35, 95% C.I. = [1.04, 1.75], p = 0.023). Perceived peer use itself explained up to 11.3% of the variance in trajectory class membership (OR: 1.50 – 4.65). When peer cannabis use and the cannabis use PRS were entered into the model simultaneously, both the PRS and peer use continued to be significantly associated with class membership (p < 0.01).
Conclusions:
Genetic propensity to cannabis use derived from heterogeneous samples appears to correlate with longitudinal increases in cannabis use frequency in young adults
CYP2A6 metabolism in the development of smoking behaviors in young adults
Cytochrome P450 2A6 (CYP2A6) encodes the enzyme responsible for the majority of nicotine metabolism. Previous studies support that slow metabolizers smoke fewer cigarettes once nicotine dependent but provide conflicting results on the role of CYP2A6 in the development of dependence. By focusing on the critical period of young adulthood, this study examines the relationship of CYP2A6 variation and smoking milestones. A total of 1209 European American young adults enrolled in the Collaborative Study on the Genetics of Alcoholism were genotyped for CYP2A6 variants to calculate a previously well-validated metric that estimates nicotine metabolism. This metric was not associated with the transition from never smoking to smoking initiation nor with the transition from initiation to daily smoking (P > 0.4). But among young adults who had become daily smokers (n = 506), decreased metabolism was associated with increased risk of nicotine dependence (P = 0.03) (defined as Fagerström Test for Nicotine Dependence score ≥4). This finding was replicated in the Collaborative Genetic Study of Nicotine Dependence with 335 young adult daily smokers (P = 0.02). Secondary meta-analysis indicated that slow metabolizers had a 53 percent increased odds (OR = 1.53, 95 percent CI 1.11-2.11, P = 0.009) of developing nicotine dependence compared with normal metabolizers. Furthermore, secondary analyses examining four-level response of time to first cigarette after waking (>60, 31-60, 6-30, ≤5 minutes) demonstrated a robust effect of the metabolism metric in Collaborative Study on the Genetics of Alcoholism (P = 0.03) and Collaborative Genetic Study of Nicotine Dependence (P = 0.004), illustrating the important role of this measure of dependence. These findings highlight the complex role of CYP2A6 variation across different developmental stages of smoking behaviors
Association of Polygenic Liability for Alcohol Dependence and EEG Connectivity in Adolescence and Young Adulthood
Differences in the connectivity of large-scale functional brain networks among individuals with alcohol use disorders (AUD), as well as those at risk for AUD, point to dysfunctional neural communication and related cognitive impairments. In this study, we examined how polygenic risk scores (PRS), derived from a recent GWAS of DSM-IV Alcohol Dependence (AD) conducted by the Psychiatric Genomics Consortium, relate to longitudinal measures of interhemispheric and intrahemispheric EEG connectivity (alpha, theta, and beta frequencies) in adolescent and young adult offspring from the Collaborative Study on the Genetics of Alcoholism (COGA) assessed between ages 12 and 31. Our findings indicate that AD PRS (p-threshold < 0.001) was associated with increased fronto-central, tempo-parietal, centro-parietal, and parietal-occipital interhemispheric theta and alpha connectivity in males only from ages 18-31 (beta coefficients ranged from 0.02-0.06, p-values ranged from 10-6-10-12), but not in females. Individuals with higher AD PRS also demonstrated more performance deficits on neuropsychological tasks (Tower of London task, visual span test) as well as increased risk for lifetime DSM-5 alcohol and opioid use disorders. We conclude that measures of neural connectivity, together with neurocognitive performance and substance use behavior, can be used to further understanding of how genetic risk variants from large GWAS of AUD may influence brain function. In addition, these data indicate the importance of examining sex and developmental effects, which otherwise may be masked. Understanding of neural mechanisms linking genetic variants emerging from GWAS to risk for AUD throughout development may help to identify specific points when neurocognitive prevention and intervention efforts may be most effective
Clinical, environmental, and genetic risk factors for substance use disorders : characterizing combined effects across multiple cohorts
Substance use disorders (SUDs) incur serious social and personal costs. The risk for SUDs is complex, with risk factors ranging from social conditions to individual genetic variation. We examined whether models that include a clinical/environmental risk index (CERI) and polygenic scores (PGS) are able to identify individuals at increased risk of SUD in young adulthood across four longitudinal cohorts for a combined sample of N = 15,134. Our analyses included participants of European (N-EUR = 12,659) and African (N-AFR = 2475) ancestries. SUD outcomes included: (1) alcohol dependence, (2) nicotine dependence; (3) drug dependence, and (4) any substance dependence. In the models containing the PGS and CERI, the CERI was associated with all three outcomes (ORs = 01.37-1.67). PGS for problematic alcohol use, externalizing, and smoking quantity were associated with alcohol dependence, drug dependence, and nicotine dependence, respectively (OR = 1.11-1.33). PGS for problematic alcohol use and externalizing were also associated with any substance dependence (ORs = 1.09-1.18). The full model explained 6-13% of the variance in SUDs. Those in the top 10% of CERI and PGS had relative risk ratios of 3.86-8.04 for each SUD relative to the bottom 90%. Overall, the combined measures of clinical, environmental, and genetic risk demonstrated modest ability to distinguish between affected and unaffected individuals in young adulthood. PGS were significant but added little in addition to the clinical/environmental risk index. Results from our analysis demonstrate there is still considerable work to be done before tools such as these are ready for clinical applications.Peer reviewe
- …