3 research outputs found

    Anti-proliferative effect of Ficus pumila Linn. on human leukemic cell lines

    Get PDF
    Background: Cancer is one of the many diseases of global concern due to its high mortality rate with drug resistance becoming a major challenge to chemotherapy and this have propelled many cancer patients to seek alternative and complementary methods of treatment. The objective for this study was, therefore, to determine the antiproliferative activity as well as phytochemical, total phenolic content (TPC), and antioxidant activity of the stem and leaf extracts (FPS and FPL) of Ficus pumila (L.) using standard methods.Methods: The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to evaluate anti-proliferative effect and spectrophotometric-based assays for antioxidant and TPC. Phytochemical constituents were accessed by standard methods.Results: The hydroethanolic extracts of the leaves and stems were rich in tannins, general glycosides, saponins, terpenoids, alkaloids, flavonoids (leaves only), and sterols (stem only). Strong total antioxidant activities were observed with FPL and FPS with EC50 values of 0.07 mg/ml and 0.089 mg/ml, respectively. All the crude extracts showed anti-proliferative effect towards the three human leukemic cell lines used (Jurkat, CEM, and HL-60). However, FPL gave the strongest inhibition concentration at 50% values of 130.97 ”g/ml (Jurkat) and 56.31 ”g/ml (HL-60).Conclusion: These findings suggest that crude extracts of FPS and FPL have anti-proliferative effect on the leukemia cells. The antioxidant properties of the plant including phenolics may be partly responsible for the anti-proliferative activity. Further studies are required to isolate chemical components of the plant and establish their anti-proliferative activities and mechanism of action

    Genetical Genomics of Tonic Immobility in the Chicken

    Get PDF
    Identifying the molecular mechanisms of animal behaviour is an enduring goal for researchers. Gaining insight into these mechanisms enables us to gain a greater understanding of behaviour and their genetic control. In this paper, we perform Quantitative Trait Loci (QTL) mapping of tonic immobility behaviour in an advanced intercross line between wild and domestic chickens. Genes located within the QTL interval were further investigated using global expression QTL (eQTL) mapping from hypothalamus tissue, as well as causality analysis. This identified five candidate genes, with the genes PRDX4 and ACOT9 emerging as the best supported candidates. In addition, we also investigated the connection between tonic immobility, meat pH and struggling behaviour, as the two candidate genes PRDX4 and ACOT9 have previously been implicated in controlling muscle pH at slaughter. We did not find any phenotypic correlations between tonic immobility, struggling behaviour and muscle pH in a smaller additional cohort, despite these behaviours being repeatable within-test
    corecore