1,019 research outputs found

    Yangian Symmetry in Integrable Quantum Gravity

    Full text link
    Dimensional reduction of various gravity and supergravity models leads to effectively two-dimensional field theories described by gravity coupled G/H coset space sigma-models. The transition matrices of the associated linear system provide a complete set of conserved charges. Their Poisson algebra is a semi-classical Yangian double modified by a twist which is a remnant of the underlying coset structure. The classical Geroch group is generated by the Lie-Poisson action of these charges. Canonical quantization of the structure leads to a twisted Yangian double with fixed central extension at a critical level.Comment: 23 pages, 1 figure, LaTeX2

    Integrable Classical and Quantum Gravity

    Full text link
    In these lectures we report recent work on the exact quantization of dimensionally reduced gravity, i.e. 2d non-linear (G/H)-coset space sigma-models coupled to gravity and a dilaton. Using methods developed in the context of flat space integrable systems, the Wheeler-DeWitt equations for these models can be reduced to a modified version of the Knizhnik-Zamolodchikov equations from conformal field theory, the insertions given by singularities in the spectral parameter plane. This basic result in principle permits the explicit construction of solutions, i.e. physical states of the quantized theory. In this way, we arrive at integrable models of quantum gravity with infinitely many self-interacting propagating degrees of freedom.Comment: 41 pages, 2 figures, Lectures given at NATO Advanced Study Institute on Quantum Fields and Quantum Space Time, Cargese, France, 22 July - 3 Augus

    On the quantization of isomonodromic deformations on the torus

    Get PDF
    The quantization of isomonodromic deformation of a meromorphic connection on the torus is shown to lead directly to the Knizhnik-Zamolodchikov-Bernard equations in the same way as the problem on the sphere leads to the system of Knizhnik-Zamolodchikov equations. The Poisson bracket required for a Hamiltonian formulation of isomonodromic deformations is naturally induced by the Poisson structure of Chern-Simons theory in a holomorphic gauge fixing. This turns out to be the origin of the appearance of twisted quantities on the torus.Comment: 13 pages, LaTex2

    Six-Dimensional (1,0) Superconformal Models and Higher Gauge Theory

    Full text link
    We analyze the gauge structure of a recently proposed superconformal field theory in six dimensions. We find that this structure amounts to a weak Courant-Dorfman algebra, which, in turn, can be interpreted as a strong homotopy Lie algebra. This suggests that the superconformal field theory is closely related to higher gauge theory, describing the parallel transport of extended objects. Indeed we find that, under certain restrictions, the field content and gauge transformations reduce to those of higher gauge theory. We also present a number of interesting examples of admissible gauge structures such as the structure Lie 2-algebra of an abelian gerbe, differential crossed modules, the 3-algebras of M2-brane models and string Lie 2-algebras.Comment: 31+1 pages, presentation slightly improved, version published in JM

    Integrable Classical and Quantum Gravity

    No full text
    In these lectures we report recent work on the exact quantization of dimensionally reduced gravity, i.e. 2d non-linear (G/H)-coset space sigma-models coupled to gravity and a dilaton. Using methods developed in the context of flat space integrable systems, the Wheeler-DeWitt equations for these models can be reduced to a modified version of the Knizhnik-Zamolodchikov equations from conformal field theory, the insertions given by singularities in the spectral parameter plane. This basic result in principle permits the explicit construction of solutions, i.e. physical states of the quantized theory. In this way, we arrive at integrable models of quantum gravity with infinitely many self-interacting propagating degrees of freedom

    Schlesinger transformations for elliptic isomonodromic deformations

    Full text link
    Schlesinger transformations are discrete monodromy preserving symmetry transformations of the classical Schlesinger system. Generalizing well-known results from the Riemann sphere we construct these transformations for isomonodromic deformations on genus one Riemann surfaces. Their action on the system's tau-function is computed and we obtain an explicit expression for the ratio of the old and the transformed tau-function.Comment: 19 pages, LaTeX2

    Intersecting Attractors

    Get PDF
    We apply the entropy formalism to the study of the near-horizon geometry of extremal black p-brane intersections in D>5 dimensional supergravities. The scalar flow towards the horizon is described in terms an effective potential given by the superposition of the kinetic energies of all the forms under which the brane is charged. At the horizon active scalars get fixed to the minima of the effective potential and the entropy function is given in terms of U-duality invariants built entirely out of the black p-brane charges. The resulting entropy function reproduces the central charges of the dual boundary CFT and gives rise to a Bekenstein-Hawking like area law. The results are illustrated in the case of black holes and black string intersections in D=6, 7, 8 supergravities where the effective potentials, attractor equations, moduli spaces and entropy/central charges are worked out in full detail.Comment: 1+41 pages, 2 Table

    On 2D2D quantum gravity coupled to a \s-model

    Full text link
    This contribution is a review of the method of isomonodromic quantization of dimensionally reduced gravity. Our approach is based on the complete separation of variables in the isomonodromic sector of the model and the related ``two-time" Hamiltonian structure. This allows an exact quantization in the spirit of the scheme developed in the framework of integrable systems. Possible ways to identify a quantum state corresponding to the Kerr black hole are discussed. In addition, we briefly describe the relation of this model with Chern Simons theory.Comment: 9 pages, LaTeX style espcrc2, to appear in Proceedings of 29th International Symposium Ahrenshoop, Buckow, 199
    corecore