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We apply the entropy formalism to the study of the near-horizon geometry of extremal black p-brane

intersections in D> 5-dimensional supergravities. The scalar flow towards the horizon is described in

terms of an effective potential given by the superposition of the kinetic energies of all the forms under

which the brane is charged. At the horizon active scalars get fixed to the minima of the effective potential

and the entropy function is given in terms of U-duality invariants built entirely out of the black p-brane

charges. The resulting entropy function reproduces the central charges of the dual boundary conformal

field theory (CFT) and gives rise to a Bekenstein-Hawking-like area law. The results are illustrated in the

case of black holes and black string intersections in D ¼ 6; 7; 8 supergravities where the effective

potentials, attractor equations, moduli spaces, and entropy/central charges are worked out in full detail.
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I. INTRODUCTION

In D> 5 dimensions, supergravity theories involve a
rich variety of tensor fields of various rank (see e.g.
[1,2]). A single black hole solution is in general charged
under different forms and can be thought of as the inter-
section on a timelike direction of extended branes of
various types. More generally, branes intersecting on a
ðpþ 1Þ-dimensional surface lead to a black p-brane inter-
secting configuration [3]. In complete analogy with what
happens in the case of D ¼ 4; 5 black holes, one can think
of the D> 5 solutions as a scalar attractor flow from
infinity to a horizon where a subset of the scalars becomes
fixed to particular values depending exclusively on the
black p-brane charges. The study of such flows requires
a generalization of the attractor mechanism [4–8] in order
to account for p-brane solutions carrying nontrivial
charges under forms of various rank. In this paper we
address the study of these general attractor flows.

We focus on static, asymptotically flat, spherically sym-
metric, extremal black p-brane solutions in supergravities
at the two derivative level [9]. The analysis combines
standard attractor techniques based on the extremization
of the black hole central charge [4–8] and the so-called
‘‘entropy function formalism’’ introduced in [10] (see
[11,12] for reviews and complete lists of references).
Like for black holes carrying vectorlike charges, we define
the entropy function for black p-branes as the Legendre
transform with respect to the brane charges of the super-

gravity action evaluated at the near-horizon geometry (see
[13] for previous investigations of black rings and nonex-
tremal branes using the entropy formalism). The resulting
entropy function can be written as a sum of a gravitational
term and an effective potential Veff given as a superposition
of the kinetic energies of the forms under which the brane
is charged. Extremization of this effective potential gives
rise to the attractor equations which determine the values
of the scalars at the horizon as functions of the brane
charges. In particular, the entropy function itself can be
expressed in terms of the U-duality invariants built from
these charges and it is proportional to the central charge of
the dual conformal field theory (CFT) living on the anti–
de Sitter (AdS) boundary. The attractor flow can then be
thought of as a c-flow towards the minimum of the super-
gravity c-function [14,15]. Interestingly, the central
charges for extremal black p-branes satisfy an area law
formula generalizing the famous Bekenstein-Hawking re-
sult for black holes.
We will illustrate our results in the case of extremal

black holes and black strings in D ¼ 6; 7; 8 supergravities.
In each case we derive the entropy function F and the near-
horizon geometry via extremization of F. At the extre-
mum, the entropy function results into a U-duality invari-
ant combination of the brane charges reproducing the black
hole entropy and the black string central charge, respec-
tively. Scalars fall into two classes: ‘‘fixed scalars’’ with
strictly positive masses and ‘‘flat scalars’’ not fixed by the
attractor equations, which span the moduli space of the
solution. The moduli spaces will be given by symmetric
product spaces that can be interpreted as the intersection of
the charge orbits of the various branes entering in the
solution. In addition one finds extra ‘‘geometric moduli’’
(radii and Wilson lines) that are not fixed by the attractors.
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The paper is organized as follows. In Sec. II we derive a
Bekenstein-Hawking-like area law for central charges as-
sociated to extremal black p-branes. In Sec. III the ‘‘en-
tropy function’’ formalism is adapted to account for
solutions charged under forms of different rank. In
Sec. IV we anticipate and summarize in a very universal
form the results for the set of theories considered in detail
in the rest of the paper, namely, the two nonchiral (1, 1) and
(2, 2) supergravities in D ¼ 6 (Secs. V and VI, respec-
tively), and the maximalD ¼ 7; 8 supergravities (Secs. VII
and VIII, respectively). In Sec. IX the uplift of the pre-
viously discussed near-horizon geometries to D ¼ 11
M-theory is briefly discussed. The concluding Sec. X con-
tains some final remarks and comments.

II. AREA LAW FOR CENTRAL CHARGES

Before specifying to a particular supergravity theory,
here we derive a universal Bekenstein-Hawking-like for-
mula underlying any gravity flow (supersymmetric or not)
ending on an AdS point. Let AdSd ��m, with �m a
product of Einstein spaces, be the near-horizon geometry
of an extremal black ðd� 2Þ-brane solution in D ¼ dþm
dimensions. After reduction along �m this solution can be
thought of as the vacuum of a gauged gravity theory in d
dimensions. To keep the discussion, as general as possible,
we analyze the solution from its d-dimensional perspec-
tive. The only fields that can be turned on consistently with
the AdSd symmetries are constant scalar fields. Therefore
we can describe the near-horizon dynamics in terms of a
gravity theory coupled to scalars ’i with a potential Vd.
The potential Vd depends on the details of the higher-
dimensional theory. The entropy function is given by eval-
uating this action at the AdSd near-horizon geometry (with
constant scalars ’i � ui)

F ¼ � 1

16�Gd

Z
ddx

ffiffiffiffiffiffiffi�g
p ðR� VdÞ

¼ �AdSdr
d
AdS

16�Gd

�
dðd� 1Þ
r2AdS

þ Vd

�
; (2.1)

with rAdS the AdS radius and�AdSd the regularized volume

of an AdS slice of radius one. Following [16] we take for
�AdSd the finite part of the AdS volume integral when the

cutoff is sent to infinity. More precisely we write the AdS
metric

ds2 ¼ rdAdSðd�2 � sinh2�d�2 þ cosh2�d�2
d�2Þ; (2.2)

with � 2 ½0; 2��, 0 � � � cosh�1r0, and d�d�2 the vol-
ume form of a unitary ðd� 2Þ-dimensional sphere. The
regularized volume �AdSd is then defined as the (absolute

value of the) finite part of the volume integral
R
ddx

ffiffiffiffiffiffiffi�g
p

in

the limit r0 ! 1. This results into

�AdSd ¼
2�

ðd� 1Þ�d�2: (2.3)

A different prescription for the volume regularization leads
to a redefinition of the entropy function by a charge inde-
pendent irrelevant constant. The ‘‘entropy’’ and near-
horizon geometry follow from the extremization of the
entropy function F with respect to the fixed scalars ui

and the radius rAdS

@F

@ui
/ @Vd

@ui
�! 0;

@F

@rAdS
/ r2AdSVd þ ðd� 1Þðd� 2Þ �! 0:

(2.4)

The first equation determines the values of the scalars at the
horizon. The second equation determines the radius of AdS
in terms of the value of the potential at the minimum.
Notice that solutions exist only if the potential Vd is
negative. Indeed, as we will see in the next section, Vd is
always composed from a part proportional to a positive
definite effective potential Veff generated by the higher-
dimensional brane charges and a negative contribution
�R� related to the constant curvature of the internal space
� [see Eq. (3.25) below]. The entropy is given by evaluat-
ing F at the extremum and can be written in the suggestive
form

F ¼ �d�2r
d�2
AdS

4Gd

¼ �d�2r
d�2
AdS

A

4GD

; (2.5)

where A denotes the area of �m,�d�2 is the volume of the
unit ðd� 2Þ-sphere, and GD ¼ AGd the D-dimensional
Newton constant. For black holes (d ¼ 2), this formula is
nothing other than the well-known Bekenstein-Hawking
entropy formula S ¼ A

4GD
and it shows that F can be

identified with the black hole entropy. For black strings

(d ¼ 3), 3
�F ¼ 3rAdS

2G3
reproduces the central charge c of the

two-dimensional CFT living on theAdS3 boundary [17]. In
general, the scaling of (2.5) with the AdS radius matches
that of the supergravity c-function introduced in [14] and it
suggests that F can be interpreted as the critical value of
the central charge c reached at the end of the attractor flow.
In the remainder of this paper we will study the flows

from the D-dimensional perspective where the black
p-branes carry in general charges under forms of various
rank.

III. THE ENTROPY FUNCTION

The bosonic action of supergravity in D-dimensions can
be written as

SSUGRA ¼
Z �

R � 1� 1

2
gijð�Þd�i ^ �d�j

� 1

2
N�n�n

ð�iÞF�n
n ^ �F�n

n þLWZ

�
; (3.1)

with F�n
n denoting a set of n-form field strengths, �i the

scalar fields living on a manifold with metric gijð�Þ, and
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LWZ some Wess-Zumino type couplings. The scalar-
dependent positive definite matrix N�n�n

ð�iÞ provides

the metric for the kinetic term of the n-forms. The sum
over n is understood. In the following we will omit the
subscript n keeping in mind that both the rank of the forms
and the range of the indices � depend on n. We will work
in units where 16�GD ¼ 1, and restore at the end the
dependence on GD. For simplicity we will restrict our-
selves here to solutions with trivial Wess-Zumino contri-
butions and this term will be discarded in the following.

We look for extremal black p-brane intersections with
near-horizon geometry of topology MD ¼ AdSpþ2 �
Sm � Tq. Explicitly we look for solutions with near-
horizon geometry

ds2 ¼ r2AdSds
2
AdSpþ2

þ r2Sds
2
Sm þ Xq

k¼1

r2kd�
2
k;

F� ¼ p�
a �

a þ e�r�r; �i ¼ ui;

(3.2)

with ~r ¼ ðrAdS; rS; rkÞ describing the AdS and sphere radii,
and ui denoting the fixed values of the scalar fields at the
horizon. �a and �r denote the volume forms of the com-
pact f�ag and noncompact f�rg cycles, respectively, in
MD. The forms are normalized such as

Z
�a

�b ¼ �b
a;

Z
�r

�s ¼ �r
s: (3.3)

They define the volume-dependent functions Cab, CrsZ
MD

�a ^ ��b ¼ Cab;
Z
MD

�r ^ ��s ¼ Crs; (3.4)

describing the cycle intersections. In particular, for the
factorized products of AdS space and spheres we consider
here, these functions are diagonal matrices with entries

Cab ¼ �ab vD

volð�aÞ2 ; Crs ¼ �rs

vD

volð�rÞ2 ; (3.5)

with vD the volume of MD. Integrals over AdS spaces are
cut off to a finite volume, according to the discussion
around (2.3).

The solutions will be labeled by their electric qIr and
magnetic charges pI

a defined as

p�
a ¼

Z
�a

F�; q�r ¼
Z
��r

N�� � F� ¼ CrsN��e
�s;

(3.6)

where we denote by ��r the complementary cycle to �r in
MD.

Let us now consider the entropy function associated to a
black p-brane solution with near-horizon geometry (3.2).
The entropy function F is defined as the Legendre trans-
form in the electric charges q�r of SSUGRA evaluated at the
near-horizon geometry

F ¼ e�rq�r � SSUGRA

¼ e�rq�r � RvD þ 1

2
N��p

�
a p

�
b C

ab

� 1

2
N��e

�re�sCrs: (3.7)

The fixed values of ~r, ui, eIr at the horizon can be found via
extremization of F with respect to ~r, ui, and eIr:

@F

@~r
¼ @F

@ui
¼ @F

@e�r
¼ 0: (3.8)

From the last equation one finds that

q�r ¼ N��e
�sCrs; (3.9)

in agreement with the definition of electric charges (3.6).
Solving this set of equations for e�r in favor of q�r one
finds

FðQ; ~r; uiÞ ¼ �Rð ~rÞvDð ~rÞ þ 1

2
QT �Mð~r; uiÞ �Q; (3.10)

with

Mð~r;uiÞ¼ N��ðuiÞCabð ~rÞ 0
0 N��ðuiÞCrsð~rÞ

� �
; Q

p�
a

q�r

 !
;

(3.11)

and N��, Crs denoting the inverse of N�� and Crs

respectively.
It is convenient to introduce the scalar and form inter-

section vielbeins V�
M, Jab, J0rs according to

N��¼V�
MV �

N�MN; Cab ¼ JacJbc; Crs ¼ J0rtJ0st:
(3.12)

From (3.5) one finds for the factorized products of AdS
space and spheres

Jab ¼ �ab v1=2
D

volð�aÞ ; J0rs ¼ �rs volð�rÞ
v1=2
D

: (3.13)

The electric and magnetic central charges can be written in
terms of these quantities as

ZMa
mag ¼ V�

MJbap�
b ; Zr

el;M ¼ ðV�1ÞM�J0srq�s:

(3.14)

Combining (3.12) and (3.14) one can rewrite the scalar-
dependent part of the entropy function as the effective
potential

Veff ¼ 1

2
QT �Mð ~r; uiÞ �Q ¼ 1

2
ZMa
magZ

Ma
mag þ 1

2
Zr
el;MZ

r
el;M:

(3.15)

For the n ¼ D=2-forms in even dimensions the argu-
ment is similar, except for the possibility of an additional
topological term
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SSUGRA ¼
Z �

R � 1� 1

2
I��ð�iÞF�

n ^ �F�
n

� 1

2
R��ð�iÞF�

n ^ F�
n

�
(3.16)

(note that R�� ¼ 	R��, with 	 ¼ ð�1Þ½D=2�). Following
the same steps as before one finds

Veff

1

2
QT �Mð ~r; uiÞ �Q; (3.17)

with

Mð~r; uiÞ � Cab
ðI þ 	RI�1RÞ�� 	ðRI�1Þ��

ðI�1RÞ�� ðI�1Þ��

0
@

1
A;

Q
p�
a

q�a

 !
: (3.18)

For R ¼ 0 we are back to the diagonal matrix (3.11). In
general, thus we obtain for the D=2-forms an effective
potential

Veff ¼ 1

2
QT �Mð ~r; uiÞ �Q ¼ 1

2
ZMaZMa; (3.19)

with

ZMa ¼ JbaðV�
Mp�

b þV�Mq�bÞ; (3.20)

where V I
M ¼ ðV�

M;V�MÞ is the coset representative.
Summarizing, in the case of a general supergravity with

bosonic action (3.1) the entropy function is given by

FðQ; ~r; uiÞ ¼ �Rð~rÞvDð~rÞ þ Veffðui; ~rÞ; (3.21)

with the intersecting-branes effective potential

Veff ¼ 1

2

X
n

QT
n �Mnð~r; uiÞ �Qn

¼ 1

2
ZMaZMa þ 1

2

X
n�D=2

ðZMnan
mag ZMnan

mag þ Zrn
el;Mn

Zrn
el;Mn

Þ;

(3.22)

where the first contribution in the second line comes from
the n ¼ D=2 forms. Notice that there are two types of
interference between the potentials coming from forms of
different rank: First, they in general depend on a common
set of scalar fields and second, they carry a nontrivial
dependence on the AdS and the sphere radii. Besides this
important difference the critical points of the effective
potential can be studied with the standard attractor tech-
niques for vectorlike charged black holes.

The near-horizon geometry follows from the extremiza-
tion equations

rVeff � @uiVeffdu
i 1

2

X
n

QT
n � rMnð~r; uiÞ �Qn �! 0;

(3.23)

@~r½�Rð ~rÞvDð ~rÞ þ Veffðui; ~rÞ� �! 0: (3.24)

We conclude this section by noticing that after reduction to
AdSd, the D-dimensional effective potential Veff combines
with the contribution coming from the scalar curvature R�

of the internal manifold into the d-dimensional scalar
potential

Vd ¼ 1

vD

Veff � R� (3.25)

appearing in (2.1). Notice that the resulting potential is not
positive defined and therefore an AdS vacuum is
supported.

IV. SUMMARY OF RESULTS

Before entering into the detailed analysis of the entropy
function and its minima, here we summarize our main
results in a universal form independent of the particular
dimension D considered. We consider extremal black
p-brane solutions with p ¼ 0; 1 in d ¼ 6; 7; 8 maximal
supergravities and N ¼ ð1; 1Þ supergravity in six dimen-
sions. The attractor mechanism for black strings in N ¼
ð1; 0Þ six-dimensional supergravity was studied in [18].
There are three classes of extremal black p-brane inter-

sections. The corresponding near-horizon geometries, ef-
fective potentials Veff , and entropy functions in each case
are given as follows:
(i) AdS3 � S3 � Tn:

Veff ¼
vAdS3

vS3
jI2j; rAdS ¼ rS ¼ jI2j1=4

2�v1=4
Tn

;

F ¼ vD

�
6

r2AdS
� 6

r2S

�
þ Veff ¼ jI2j:

(4.1)

(ii) AdS3 � S2 � Tn:

Veff ¼ 3

2

vAdS3

vS2
v1=3
Tn jI3j2=3;

rAdS ¼ 2rS ¼ jI2j1=3
2�v1=3

Tn

;

F ¼ vD

�
6

r2AdS
� 2

r2S

�
þ Veff ¼ jI3j:

(4.2)

(iii) AdS2 � S3 � Tn:

Veff ¼ 3

2

vAdS2

vS3v
1=3
Tn

jI3j2=3;

rAdS ¼ 1

2
rS ¼ jI3j1=6

2�v1=3
Tn

;

F ¼ vD

�
2

r2AdS
� 6

r2S

�
þ Veff ¼ jI3j1=2:

(4.3)

where
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vD ¼vAdSdvSmvTn vAdSd ¼�AdSdr
d
AdS; vSn ¼ rnS�n;

vTn ¼�n
1

Yn
i¼1

ri; �1 ¼ 2�; �2 ¼ 4�;

�3 ¼ 2�2; �AdS2 ¼ 2�; �AdS3 ¼ 2�2; (4.4)

are the volumes of the near-horizon AdS/spheres and I2;3
are the relevant quadratic and cubic U-duality invariants
built out of the black p-brane charges. We stress that these
invariants involve, in general, charges under forms of
various ranks. This is also the case for the effective poten-
tial Veff resulting from the interfering superpositions of the
various form contributions.

We also note that in all cases the radii of the circles of the
torus Tn are not fixed by the extremization equations but
remain as free parameters.

The results (4.1), (4.2), and (4.3) show that the entropy
function F can be related to the black hole entropy and
black string central charges

Sblack hole ¼ F ¼ jI3j1=2 ¼ vS3vTn

4GD

;

cblack string ¼ 3

�
F ¼ 3

�
jI2;3j ¼ 3rAdS

2G3

:

(4.5)

In the following we will derive these results from the
corresponding supergravities in various space-time
dimensions.

V. N ¼ ð1; 1Þ IN D ¼ 6

A. N ¼ ð1; 1Þ, D ¼ 6 supersymmetry algebra

The half-maximal (1, 1), D ¼ 6 Poincaré supersymme-
try algebra has Weyl pseudo-Majorana supercharges and
R-symmetry SOð4Þ 	 SUð2ÞL � SUð2ÞR. Its central ex-
tension reads as follows (see e.g. [19–21])

fQA

;QB

�g ¼ 

�

�Z

½AB�
� þ 


���

� ZðABÞ

���; (5.1)

fQ _A
_
;Q

_B
_�
g ¼ 
�

_
 _�
Z½ _A _B�
� þ 
���

_
 _�
Zð _A _BÞ
��� ; (5.2)

fQA

;Q

_A
_�
g ¼ C
 _�Z

A _A þ 
��


 _�
ZA _A
��; (5.3)

where A, _A ¼ 1; 2, so that the ðL;RÞ-chiral supercharges
are SUð2ÞðL;RÞ doublets.

Notice that, in our analysis of both (1, 1) and (2, 2) D ¼
6 supergravities, it holds that ZðABÞ

��� ¼ Zð _A _BÞ
��� ¼ 0, because

the presence of the term ZðABÞ
��� is inconsistent with the

bound p � D� 4, due to the assumed asymptotical flat-
ness of the (intersecting) black p-brane space-time
background.

Strings can be dyonic, and are associated to the central

charges Z½AB�
� , Z½ _A _B�

� in the ð1; 1Þ of theR-symmetry group.
They are embedded in the 1
 [here and below the sub-
scripts denote the weight of SOð1; 1Þ] of the U-duality

group SOð1; 1Þ � SOð4; nVÞ. On the other hand, black
holes and their magnetic duals (black 2-branes) are asso-

ciated to ZA _A, ZA _A
�� in the ð2; 20Þ of SOð4Þ, and they are

embedded in the ðnV þ 4Þ
ð1=2Þ of SOð1; 1Þ � SOð4; nVÞ.
In our analysis, the corresponding central charges are

denoted, respectively, by Zþ and Z� for dyonic strings, and
by Zel;A _A and Zmag;A _A for black holes and their magnetic

duals.

B. N ¼ ð1; 1Þ, D ¼ 6 supergravity

The bosonic field content of half-maximal N ¼ ð1; 1Þ
supergravity in D ¼ 6 dimensions coupled to nV matter
(vector) multiplets consists of a graviton, ðnV þ 4Þ vector
fields with field strengths FM

2 , M ¼ 1; . . . ; ðnV þ 4Þ, a
three-form field strength H3, and 4nV þ 1 scalar fields
parametrizing the scalar manifold

M ¼ SOð1; 1Þ � SOð4; nVÞ
SOð4Þ � SOðnVÞ ;

dimRM ¼ 4nV þ 1;

(5.4)

with the dilaton � spanning SOð1; 1Þ, and the 4nV real
scalars zi (i ¼ 1; . . . ; 4nV) parametrizing the quaternionic

manifold SOð4;nV Þ
SOð4Þ�SOðnV Þ . The U-duality group is SOð1; 1Þ �

SOð4; nVÞ and the field strengths transform under this
group in the representations

F�
2 : ðnV þ 4Þþð1=2Þ; H3: 1
1: (5.5)

The coset representative L�
M, �, M ¼ 1; . . . ; 4þ nV , of

SOð4;nV Þ
SOð4Þ�SOðnV Þ sits in the ð4;nVÞ representation of the stabil-

izer H ¼ SOð4Þ � SOðnVÞ 	 SUð2ÞL � SUð2ÞR �
SOðnVÞ, and satisfies the defining relations

L�
MMNL�

N ¼ ��; L�
M��L�

N ¼ MN; (5.6)

with the SOð4; nVÞ metric ��. It is related to the vielbein
V�

M from (3.12) by

V �
M ¼ e��=2L�

M; (5.7)

and its inverse is defined by LM
�L�

N ¼ �N
M. The Maurer-

Cartan equations take the form

PMN ¼ LM
�dzL�N ¼ LM

�@iL�Ndz
i; (5.8)

where PMN is a symmetric off-diagonal block matrix with
nonvanishing entries only in the (4� nV)-blocks. Here and
below we use �MN to raise and lower the indices M, N.
The solutions will be specified by the electric and mag-

netic three-form charges q, p, and the two-form charges
p�, q�. The quadratic and cubic U-duality invariants that
can be built from these charges are

I 2 ¼ pq; I3 ¼ 1

2
��p

�p�p; I 0
3 ¼

1

2
��q�q�q:

(5.9)
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The central charges (3.14) and (3.20) are given by

Zmag;M ¼ e��=2J2L�Mp
�; Zel;M ¼ e�=2J02LM

�q�;

Z
 ¼ 1ffiffiffi
2

p J3ðe�p
 e��qÞ: (5.10)

Using (5.6), the U-duality invariants (5.9) can be rewritten
in terms of the central charges as

1

2
ðZ2þ � Z2�Þ ¼ J23I2;

1

2
ffiffiffi
2

p MNZmag;MZmag;NðZþ þ Z�Þ ¼ ðJ3J22ÞI3;

1

2
ffiffiffi
2

p MNZel;MZel;NðZþ � Z�Þ ¼ ðJ3J022 ÞI 0
3: (5.11)

The effective potential Veff (3.22) for this theory is given by

Veff ¼ 1

2
Z2þ þ 1

2
Z2� þ 1

2
Z2
el;M þ 1

2
Z2
mag;M: (5.12)

From the Maurer-Cartan equations (5.8) one derives

rZmag;M ¼ �PMNZmag;N � 1

2
P�Zmag;M;

rZel;M ¼ PMNZel;N þ 1

2
P�Zel;M;

rZ
 ¼ P�Z�; (5.13)

with P� ¼ d�. The attractor equations (3.23) thus trans-

late into

PMNðZel;MZel;N � Zmag;MZmag;NÞ
þ P�

�
2ZþZ� � 1

2
Z2
mag;M þ 1

2
Z2
el;M

�
�! 0: (5.14)

Splitting the index M into ðA _AÞ ¼ 1; . . . ; 4, (A, _A ¼ 1; 2)
(central charges sector) and I ¼ 5; . . . ; ðnV þ 4Þ (matter
charges sector), and using the fact that only the compo-
nents PI;A _A ¼ PA _A;I are nonvanishing, the attractor equa-

tions can be written as

Zel;A _AZel;I � Zmag;A _AZmag;I ¼ 0;

4ZþZ� � Zmag;A _AZ
A _A
mag þ Zel;A _AZ

A _A
el � Z2

mag;I þ Z2
el;I ¼ 0:

(5.15)

Indices A, _A are raised and lowered by 	AB, 	 _A _B. We will
study the solutions of these equations, their
supersymmetry-preserving features, and the corresponding
moduli spaces. Bogomol’nyi-Prasad-Sommerfield (BPS)
solutions correspond to the solutions of (5.15) satisfying

Zmag;I ¼ Zel;I ¼ 0; (5.16)

as follows from the Killing spinor equation ��I
A 	

TI
��


��	A ¼ 0 with TI
�� the matter central charge

densities.

Let us finally consider the moduli space of the attractor
solutions, i.e. the scalar degrees of freedom which are not
stabilized by the attractor mechanism at the classical level.
For homogeneous scalar manifolds this space is spanned
by the vanishing eigenvalues of the Hessian matrix rrVeff

at the critical point. Using the Maurer-Cartan equations
(5.13) one can write rrVeff at the critical point as

rrVeff ¼ PI;A _APJ
A _Að2Zel;IZel;J þ 2Zmag;IZmag;JÞ

þ PI;A _AIPI;B _Bð2Zel;A _AZel;B _B þ 2Zmag;A _AZmag;B _BÞ
þ P�P�

�
2Z2þ þ 2Z2� þ 1

2
Z2
mag;M þ 1

2
Z2
el;M

�
þ 2P�P

I;A _AðZel;IZel;A _A þ Zmag;IZmag;A _AÞ
¼ HIA _A;JB _BP

I;A _APJ;B _B þ 2HIA _A;�P
I;A _AP�

þH�;�P�P�; (5.17)

which defines the Hessian symmetric matrix H with com-
ponents HIA _A;JB _B, HIA _A;�, H�;�. By explicit evaluation of

the Hessian matrix for both BPS and non-BPS solutions we
will show that eigenvalues are always zero or positive
implying the stability (at the classical level) of the solu-
tions under consideration here. We will now specify to the
different near-horizon geometries and study the BPS and
non-BPS solutions of the attractor equations.

C. AdS3 � S3

Let us start with an AdS3 � S3 near-horizon geometry,
in which only the three-form charges (magnetic p and
electric q) are switched on (dyonic black string). There
are no closed two-forms supported by this geometry and
therefore two-form charges are not allowed. The near-
horizon geometry Ansatz can then be written as

ds2 ¼ r2AdSds
2
AdS3

þ r2Sds
2
S3
; H3 ¼ p�S3 þ e�AdS3 :

(5.18)

The attractor equations (5.15) are solved by

Zmag;M ¼ ZelM ¼ Z� ¼ 0; or equivalently; (5.19)

Zmag;M ¼ Zel;M ¼ Zþ ¼ 0: (5.20)

Solution (5.19) has I2 > 0, whereas solution (5.20) has
I2 < 0; they are both 1

4 -BPS, and they are equivalent,

because the considered theory is nonchiral.
Plugging the solution (5.19) or (5.20) into (5.12) one can

write the effective potential at the horizon in the scalar
independent form

Veff ¼ 1

2
Z2þ þ 1

2
Z2� ¼ 1

2
jZ2þ � Z2�jJ23jI2j ¼

�
vAdS3

vS3

�
jI2j;

(5.21)

in agreement with the claimed formula (4.1). Extremizing
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F in ~r, one finds the entropy function and near-horizon
AdS and sphere radii (4.1).

Now let us consider the moduli space of the solutions.
Plugging (5.19) and (5.20) into (5.17) one finds that the
only nontrivial component of the Hessian matrix is

H�� ¼ 2Z2þ þ 2Z2� ¼ 4Veff > 0: (5.22)

Therefore, the Hessian matrix H for the AdS3 � S3 solu-
tion has 4nV vanishing eigenvalues and one strictly positive
eigenvalue, corresponding to the dilaton direction.
Consequently, the moduli space of nondegenerate attrac-
tors with near-horizon geometry AdS3 � S3 is the quater-
nionic symmetric manifold

M BPS ¼ SOð4; nVÞ
SOð4Þ � SOðnVÞ : (5.23)

This result is also evident from the explicit form of the
attractor solution Z� ¼ 0: only the dilaton is stabilized,
while all other scalars are not fixed since the remaining
equations Zel;M ¼ Zmag;M ¼ 0 are automatically satisfied

for p� ¼ q� ¼ 0.

D. AdS3 � S2 � S1

For solutions with near-horizon geometry AdS3 � S2 �
S1, there is no support for electric two-form charges and
therefore e� ¼ 0. We set also the electric three-form
charge e to zero otherwise no solutions are found. The
near-horizon Ansatz becomes

ds2 ¼ r2AdSds
2
AdS3

þ r2Sds
2
S2
þ r21d�

2;

F�
2 ¼ p��S2 ; H3 ¼ p�S2�S1 :

(5.24)

The attractor equations (5.15) admit two types of solutions
with nontrivial central charges

BPS : Zþ ¼ Z�; Zmag;A _AZ
A _A
mag ¼ 4Z2þ; (5.25)

non -BPS: Zþ ¼ Z� Z2
mag;I ¼ 4Z2þ: (5.26)

Plugging the solution into (5.11) one finds the relation

jJ22J3I3j ¼ 2
ffiffiffi
2

p
Z3þ: (5.27)

that allows us to write the effective potential (5.12) at the
horizon in the scalar independent form

Veff ¼ 3Z2þ ¼ 3

2
jJ22J3I3j2=3; (5.28)

with

ðJ22J3Þ2=3 ¼
vD

ðvol2
S2
volS2�S1Þ2=3

¼ vAdS3v
1=3
T

vS

; (5.29)

in agreement with our proposed formula (4.2) upon taking
I3 ¼ I3. The black string central charge and the near-
horizon radii follow from ~r-extremization of the entropy

function F and are given by (4.2). Note that the radius r1 of
the extra S1 is not fixed by the extremization equations.
Besides this geometric modulus the solutions can be also
deformed by turning on Wilson lines for the vector field
potentials A�

5 ¼ c�. This is in contrast with the more

familiar case of black holes in D ¼ 4; 5 where the near-
horizon geometry is completely fixed at the end of the
attractor flow. As we shall see in the following, this will
be always the case for extremal black p-branes with Tn

factors where the geometric moduli describing the shapes
and volumes of the tori and constant values of field poten-
tials along Tn remain unfixed at the horizon.
Now, let us consider the moduli spaces of the two

solutions. The BPS solution (5.25) has remaining symme-
try SOð3Þ � SOðnVÞ, because by using an SOð4Þ trans-
formation this solution can be recast in the form

Zmag;A _A ¼ 2z�A1� _A1; Zþ ¼ Z� ¼ z; Zel;M ¼ 0:

(5.30)

Notice that both choices of sign satisfy the Killing spinor
relations (5.16) and therefore correspond to supersymmet-
ric solutions. Plugging (5.30) into the Hessian matrix (5.17)
one finds

H ¼ z2
8�IJ�A1�B1� _A1� _B1 04nV�1

01�4nV 6

� �
: (5.31)

This matrix has 3nV vanishing eigenvalues and nV þ 1
strictly positive eigenvalues, corresponding to the dilaton
direction plus the nV directions PI;11. Consequently, the

moduli space of the BPS attractor solution (5.25) with near-
horizon geometry AdS3 � S2 � S1 is the symmetric mani-
fold

M BPS ¼ SOð3; nVÞ
SOð3Þ � SOðnVÞ : (5.32)

More precisely, the scalars along PI;A _A in the ð4;nVÞ of the
group H decompose with respect to the symmetry group
SOð3Þ � SOðnVÞ as

ð4;nVÞ ! m2 ¼ ð3;nVÞ|fflffl{zfflffl}
m2¼0

� ð1;nVÞ|fflffl{zfflffl}
m2>0

; (5.33)

and only the ð1;nVÞ representation is massive, together
with the dilaton. The ð3;nVÞ representation remains mass-
less, and it contains all the massless Hessian modes of the
attractor solutions.
The analysis of the moduli space for the non-BPS solu-

tion follows closely that for the BPS one. Now the sym-
metry is SOð4Þ � SOðnV � 1Þ and using an SOðnVÞ
transformation such a solution can be recast as follows:

Zmag;I ¼ 2z�I1; Zþ ¼ Z� ¼ z;

Zel;M ¼ Zmag;A _A ¼ Zel;A _A ¼ 0:
(5.34)

Plugging (5.34) into the Hessian matrix (5.17), now one
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finds

H ¼ z2
8�A _A�B _B�J1�I1 04nV�1

01�4nV 6

� �
: (5.35)

This Hessian matrix has 4ðnV � 1Þ vanishing eigenvalues
and 4þ 1 strictly positive eigenvalues, corresponding to
the dilaton direction plus the fourP1;A _A directions.

Consequently, the moduli space of the non-BPS attractor
solution with near-horizon geometry AdS3 � S2 � S1 is
the symmetric manifold

M nonBPS ¼ SOð4; nV � 1Þ
SOð4Þ � SOðnV � 1Þ : (5.36)

More precisely, the scalars along PI;A _A in the ð4;nVÞ of the
group H decompose with respect to the symmetry group
SOð4Þ � SOðnV � 1Þ as

ð4;nVÞ ! m2 ¼ ð4;nV�1Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
m2¼0

� ð4; 1Þ|ffl{zffl}
m2>0

; (5.37)

and only the ð4; 1Þ representation is massive, together with
the dilaton. The ð4;nV � 1Þ representation remains mass-
less, and it contains all the massless Hessian modes of the
attractor solution.

The BPS solution can be regarded as the intersection of
one 1

2 -BPS black string (with pq ¼ 0) with one 1
4 -BPS

black 2-brane (with p�p��� > 0). The latter is described

by the charge orbit SOð4;nV Þ
SOð3;nV Þ [22]. The moduli space of the

latter coincides with the moduli space of the whole con-
sidered intersection, and it is given by Eq. (5.32).

On the other hand, the non-BPS solution can be regarded
as the intersection of one 1

2 -BPS black string (with pq ¼ 0)

with one non-BPS black 2-brane (with p�p��� < 0).

The latter is described by the charge orbit SOð4;nV Þ
SOð4;nV�1Þ [22].

The moduli space of the latter coincides with the moduli
space of the whole considered intersection, and it is given
by the quaternionic manifold of Eq. (5.36).

A similar reasoning will be performed for the moduli
spaces of the attractor solutions of the maximal nonchiral
D ¼ 6 supergravity in Sec. VI.

E. AdS2 � S3 � S1

For solutions with AdS2 � S3 � S1 near-horizon ge-
ometry, there is no support for magnetic two-form charges
and therefore Zmag;M ¼ 0. The near-horizon Ansatz be-

comes

ds2 ¼ r2AdSds
2
AdS2

þ r2Sds
2
S3
þ r21d�

2;

F�
2 ¼ e��AdS2 ; H3 ¼ e�AdS2�S1 :

(5.38)

The fixed scalar equations (5.14) admit two types of solu-
tions

BPS : Zmag;M ¼ Zel;I ¼ 0;

Zþ ¼ �Z�; Zel;A _AZ
A _A
el ¼ 4Z2þ;

(5.39)

non -BPS: Zmag;M ¼ Zel;A _A ¼ 0;

Zþ ¼ �Z�; Z2
el;I ¼ 4Z2þ:

(5.40)

Now one finds

J022 J03I 0
3 ¼ 2

ffiffiffi
2

p
Z3þ; (5.41)

and the effective potential (5.12) at the horizon can be
written in the scalar independent form

Veff ¼ 3Z2þ ¼ 3

2
jJ022 J03I 0

3j2=3; (5.42)

with

ðJ022 J03Þ2=3 ¼
ðvol2AdS2volAdS2�S1Þ2=3

vD

¼ vAdS2

v1=3
T vS

; (5.43)

in agreement with the proposed formula (4.3) upon taking
I3 ¼ I 0

3. Extremizing F in the radii ~r one finds the result

(4.3) for the black hole entropy and AdS and sphere radii.
Again, the radius r1 of the extra S1 is not fixed by the
extremization equations. The analysis of the moduli spaces
follows mutatis mutandis that of the AdS3 � S2 attractors
(replacing magnetic by electric charges) and the results are
again given by the symmetric manifolds (5.32) and (5.36).

VI. N ¼ ð2; 2Þ IN D ¼ 6

A. N ¼ ð2; 2Þ, D ¼ 6 supersymmetry algebra

The maximal (2, 2), D ¼ 6 Poincaré supersymmetry
algebra has Weyl pseudo-Majorana supercharges and
R-symmetry USpð4ÞL �USpð4ÞR (USpð4Þ ¼ Spinð5Þ).
Its central extension reads as follows (see e.g. [19–21]):

fQA

;QB

�g ¼ 
�

�Z

½AB�
� þ 
���


� ZðABÞ
���; (6.1)

fQ _A
_
;Q

_B
_�
g ¼ 
�

_
 _�
Z½ _A _B�
� þ 
���

_
 _�
Zð _A _BÞ
��� ; (6.2)

fQA

;Q

_A
_�
g ¼ C
 _�Z

A _A þ 

��


 _�
ZA _A
��; (6.3)

where A, _A ¼ 1; . . . ; 4, so that the ðL; RÞ-chiral super-
charges are SOð5ÞðL;RÞ-spinors.
Strings can be dyonic, and they are in the antisymmetric

traceless ð5; 1Þ þ ð1; 50Þ of the R-symmetry group. They
are embedded in the 10 of the U-duality group SOð5; 5Þ.
On the other hand, black holes and their magnetic duals
(black 2-branes) sit in the ð4; 40Þ of USpð4ÞL �USpð4ÞR,
and they are embedded in the chiral spinor representation
16ðLÞ of SOð5; 5Þ.
In our analysis, the corresponding central charges are

denoted, respectively, by Za and Z _a (a, _a ¼ 1; . . . ; 5) for
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dyonic strings, and by Zel;A _A and Zmag;A _A for black holes

and their magnetic duals.

B. N ¼ ð2; 2Þ, D ¼ 6 supergravity

The maximalN ¼ ð2; 2Þ supergravity inD ¼ 6 dimen-
sions [23] has bosonic field content given by the graviton,
25 scalar fields, 16 vectors, and five two-form fields. Under
the global symmetry group SOð5; 5Þ these fields organize
as

V I
M ¼ Vm

a Vm
_a

Vma V _ma

� �
:

SOð5; 5Þ
SOð5Þ � SOð5Þ

I;M ¼ 1; . . . 10; a; _a;m ¼ 1; . . . ; 5; F�
2 : 16

� ¼ 1; . . . ; 16; fHa
3þ; H

_a
3�g: 10 a; _a ¼ 1; . . . ; 5:

(6.4)

In particular, the scalar coset space is parametrized by the
vielbein V I

M evaluated in the vector representation 10 of
SOð5; 5Þ, satisfying the defining relations

V I
aV J

a �V I
_aV J

_a ¼ IJ �
0 1

1 0

 !
;

Vm
MVmN þVmMVm

N ¼ MN � 1 0

0 �1

 !
;

i.e. the splits of basis V I
M ! ðVm

M;VmMÞ and V I
M !

ðV I
a;V I

_aÞ refer to the decompositions SOð5; 5Þ ! GLð5Þ
and SOð5; 5Þ ! SOð5Þ � SOð5Þ, respectively. They are
relevant for splitting the two-forms into electric and mag-
netic potentials and for coupling them to the fermionic
fields, respectively. The scalar coset space can equivalently

be described by a scalar vielbein V�
A _A (A, _A ¼ 1; . . . ; 4)

evaluated in the 16 spinor representation of SOð5; 5Þ. The
Maurer-Cartan equations are given by

rV I
a ¼ �Pa _aV I

_a; rV I
_a ¼ �Pa _aV I

a;

rV�
A _A ¼ � 1

2
Pa _a


AB
a 


_A _B
_a V�B _B;

(6.5)

with the SOð5Þ � SOð5Þ gamma matrices 
AB
a , 


_A _B
_a , and

the vector and spinorial indices raised and lowered by the
SOð5Þ invariant symmetric tensors �ab, � _a _b and antisym-
metric tensors �AB, � _A _B, respectively.

The Lagrangian involves the five two-forms Bm, whose
field strengths are related to the self-dual Ha

3þ and antiself-

dual H _a
3� by

dBm ¼ Hm � VmaHa
3þ þV _maH _a

3�: (6.6)

Electric and magnetic three-form charges combine into an
SOð5; 5Þ vector QI ¼ ðpm; qmÞ. The quadratic and cubic
U-duality invariants of charges are given by

I 2 ¼ 1

2
IJQIQJ; I3 ¼ 1

2
ffiffiffi
2

p ð�IÞ��QIp
�p�;

I 0
3 ¼

1

2
ffiffiffi
2

p ð�IÞ��QIq�q�

(6.7)

with the SOð5; 5Þ gamma matrices ð�IÞ��, ð�IÞ��.
The central charges (3.14) and (3.20) are defined as

ZA _A
mag ¼ J2V�

A _Ap�; ZA _A
el ¼ J02ðV�1ÞA _A�q�;

Za ¼ J3ðV�1ÞaIQI; Z _a ¼ J3ðV�1Þ _aIQI:
(6.8)

In terms of these central charges one can rewrite the
U-duality invariants (6.7) as

2J23I2 ¼ Z2
a � Z2

_a;

2
ffiffiffi
2

p ðJ22J3ÞI3 ¼ ZA _A
magZ

B _B
magðZa


a
AB� _A _B þ Z _a�AB


_a
_A _B
Þ;

2
ffiffiffi
2

p ðJ022 J3ÞI 0
3 ¼ Zel;A _AZel;B _BðZa


a
AB� _A _B � Z _a�AB


_a
_A _B
Þ:

(6.9)

The intersecting-branes effective potential Veff for the
considered theory is defined as

Veff ¼ 1

2
Z2
a þ 1

2
Z2

_a þ
1

2
Zel;A _AZ

A _A
el þ 1

2
Zmag;A _AZ

A _A
mag:

(6.10)

The Maurer-Cartan equations (6.5) imply

rZa ¼ Pa _aZ _a; rZ _a ¼ Pa _aZa

rZA _A
el ¼ 1

2
Pa _a


AB
a 


_A _B
_a Zel;B _B;

rZA _A
mag ¼ � 1

2
Pa _a


AB
a 


_A _B
_a Zmag;B _B:

(6.11)

Thus the extremization equations take the form

rVeff ¼ ZarZa þ Z _arZ _a þ Zel;A _ArZA _A
el þ Zmag;A _ArZA _A

mag

¼
�
2ZaZ _a þ 1

2

a
AB


_a
_A _B
ZA _A
el Z

B _B
el

� 1

2

a
AB


_a
_A _B
ZA _A
magZ

B _B
mag

�
Pa _a �! 0: (6.12)

The Hessian matrix at the horizon can written as

rrVeff ¼ 2Pa _aPb _b

�
�abZ _aZ _b þ � _a _bZaZb

þ 1

4
ð
a
bÞABð
 _a


_bÞ _A

_BðZA _A
el Zel;B _B

þ ZA _A
magZmag;B _BÞ

�
: (6.13)

C. AdS3 � S3

The analysis of D ¼ 6 maximal supersymmetric super-
gravity solutions follows the same steps as in the half-
maximal case with minor modifications. We start from
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the Ansatz

ds2 ¼ r2AdSds
2
AdS3

þ r2Sds
2
S3
;

Hm
3 ¼ pm�S3 þ em�AdS3 ;

(6.14)

for the AdS3 � S3 near-horizon geometry. The fixed scalar
equation (6.12) admits the two solutions

Zmag;A _A ¼ Zel;A _A ¼ Za ¼ 0;

Zmag;A _A ¼ Zel;A _A ¼ Z _a ¼ 0;
(6.15)

which are both supersymmetric. Combining this with (6.9)
one can write the effective potential at the horizon in the
scalar independent form

Veff ¼ 1

2
ðZ2

a þ Z2
_aÞ ¼

1

2
jZ2

a � Z2
_aj ¼ J23jI2j: (6.16)

Again the effective potential is given by the general for-
mula (4.1) but now I2 ¼ I2 is given by the quadratic
invariant (6.7) of SOð5; 5Þ. Similarly, ~r-extremization of
the entropy function shows that the sphere and AdS radii
and the black string central charges are given by (4.1) in
terms of the SOð5; 5Þ invariant I2.

Let us consider the moduli space of these solutions. The
two solutions are equivalent and we can focus on the Za ¼
0 case. Using an SOð5Þ rotation this solution can be recast
in the form Z _a ¼ z� _a;1. The symmetry group leaving this

solution invariant is SOð5; 4Þ. The moduli space is hence
given by the quotient of this group by its maximal compact
subgroup SOð5Þ � SOð4Þ, i.e. ([24–26])

M BPS ¼ SOð5; 4Þ
SOð5Þ � SOð4Þ : (6.17)

Alternatively, the same conclusion can be reached by
evaluating the Hessian (6.13) at the solution

rrVeff ¼ 2z2Pa _1Pa _1; (6.18)

one finds five strictly positive eigenvalues. More precisely,
the ð5; 5Þ scalars decompose in terms of SOð5Þ � SOð4Þ as

ð5; 5Þ ! ð5; 4Þ|ffl{zffl}
m2¼0

� ð5; 1Þ|ffl{zffl}
m2>0

; (6.19)

with the ð5; 4Þ components along Pa; _b> _1 spanning the

moduli space of the solution.
The story goes the same way for the solution with Z _a ¼

0 which has moduli space MBPS ¼ SOð4;5Þ
SOð4Þ�SOð5Þ . The two

solutions are equivalent and they both preserve the same
amount of supersymmetry (namely the minimal one:
1
8 -BPS). Actually, they can be interpreted as the supersym-

metry uplift of the two distinct 1
4 -BPS solutions [given by

Eqs. (5.19) and (5.20)] of the half-maximal D ¼ 6 super-
gravity coupled to nV ¼ 4 vector multiplets.

D. AdS3 � S2 � S1

The Ansatz for this near-horizon geometry is

ds2 ¼ r2AdSds
2
AdS3

þ r2Sds
2
S2
þ r21d�

2;

FA
2 ¼ pA�S2 Hm

3 ¼ pm�S2�S1 :
(6.20)

Notice that a magnetic string corresponds to the SOð5; 5Þ
invariant constructed with the 10-dimensional vector
ðpm; 0Þ having vanishing norm. This is the 1

2 -BPS con-

straint for a D ¼ 6 string configuration, derived in [24].
The solutions of the fixed-scalar equations (6.12) on this

background can be written up to an SOð5Þ � SOð5Þ rota-
tion as1

Za ¼ z�a1; Z _a ¼ z� _a1; Zel;A _A ¼ 0;

ZA _A
mag ¼

ffiffiffi
2

p
diagðz; z; 0; 0Þ:

(6.21)

Using (6.9) one can express z in terms of the cubic
U-invariant (6.7)

ðJ22J3ÞI3 ¼ 2
ffiffiffi
2

p
z3: (6.22)

Combining (6.10), (6.21), and (6.22), one finally writes the
effective potential in the scalar independent form

Veff ¼ 3z2 ¼ 3

2
jJ22J3I3j2=3 ¼ 3

2

vAdS3v
1=3
T

vS

jI3j2=3:
(6.23)

Like in the half-maximal case, the effective potential, the
black string central charge and the near-horizon geometry
are given by the general formulas (4.2) but now in terms of
the SOð5; 5Þ cubic invariant I3 ¼ I3. Again, the radius r1
of the extra S1 is not fixed by the extremization equations.
Let us consider the moduli space of this attractor. The

symmetry of the solution is SOð4; 3Þ, which is the subgroup
of SOð5; 5Þ leaving invariant (6.21). To see this we notice
that SOð4; 3Þ is the maximal subgroup of SOð5; 5Þ under
which the decompositions of both the vector and the spinor
representations of SOð5; 5Þ contain a singlet

10 ¼ 7 � 3 � 1; 16 ¼ 8 � 7 � 1: (6.24)

The moduli space is then given by the quotient of the
symmetry group by its maximal compact subgroup

M BPS ¼ SOð4; 3Þ
SOð4Þ � SOð3Þ : (6.25)

More precisely, decomposing the scalar components Pa _a

under SOð4Þ � SOð3Þ one finds

1The explicit form of the solution clearly depends on the
particular form of SOð5Þ gamma matrices considered. In our
conventions, this choice of ZA _A

mag induces a matrix

a
AB


_a
_A _B
ZA _A
magZ

B _B
mag which has only one nonvanishing entry.
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ð5; 5Þ ! ð4; 3Þ|ffl{zffl}
m2¼0

� ð2 � ð4; 1Þ � ð1; 3Þ � 2 � ð1; 1ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
m2>0

: (6.26)

This can be confirmed by explicitly evaluating the Hessian
(6.13) at this extremum. As a result one finds 12 vanishing
and 13 strictly positive eigenvalues.

The moduli space in (6.25) can be understood in terms of
orbits of 1

2 -BPS strings and 1
4 -BPS black holes [24–26].

Indeed, the U-invariant I3 can be considered as an inter-
section of a 1

2 -BPS string with supporting charge orbit
SOð5;5Þ

SOð4;4Þ�sR
8 and of a 1

4 -BPS black hole with supporting

charge orbit SOð5;5Þ
SOð4;3Þ�sR

8 [25]. The common stabilizer of

the charge vectors 10 and 16 of the D ¼ 6 U-duality
SOð5; 5Þ is SOð4; 3Þ. Indeed, we find that the resulting
moduli space of the considered intersecting configuration
is given by Eq. (6.25). This is also what is expected by the
supersymmetry uplift of the BPS moduli space of the half-
maximal (1, 1) theory to maximal (2, 2) supergravity.

E. AdS2 � S3 � S1

The near-horizon geometry Ansatz is

ds2 ¼ r2AdSds
2
AdS2

þ r2Sds
2
S3
þ r21d�

2;

FA
2 ¼ eA�AdS2 ; Hm

3 ¼ em�AdS2�S1 :
(6.27)

The computation of the effective potential proceeds as for
the AdS3 � S2 � S1 case replacing magnetic by electric
charges. The final result reads

Veff ¼ 3

2
jJ022 J3I 0

3j2=3 ¼
3

2

vAdS2

vS3v
1=3
T

jI 0
3j: (6.28)

Extremizing the entropy function F in the radii ~r one
confirms that the AdS, sphere radii and the black hole
entropy are given again by the general formulae (4.3)
with I3 ¼ I 0

3 the magnetic SOð5; 5Þ cubic invariant. The

analysis of the moduli space is identical to that of the
AdS3 � S2 � S1 case and the result is again given by
(6.25).

VII. MAXIMAL D ¼ 7

A. N ¼ 2, D ¼ 7 supersymmetry algebra

The maximal N ¼ 2, D ¼ 7 Poincaré supersymmetry
algebra has pseudo-Majorana supercharges and
R-symmetry USpð4Þ. Its central extension reads as fol-
lows (see e.g. [19–21]):

fQA

;QB

�g ¼ C
�Z
ðABÞ þ 


�

�Z

½AB�
� þ 


��

�Z

½AB�
��

þ 
���

� ZðABÞ

���; (7.1)

where A ¼ 1; . . . ; 4, so that the supercharges are

SOð5Þ-spinors. The ‘‘trace’’ part of Z½AB�
� is the momentum

P��
AB, where �AB is the 4� 4 symplectic metric.

Black holes and their magnetic dual (black 3-brane)

central extensions ZðABÞ, ZðABÞ
��� sit in the 10 of the

R-symmetry group, and they are embedded in the 10
(and 100) of the U-duality group SLð5;RÞ. Thus, they

correspond to the decomposition 10ð0Þ ! 10 of SLð5;RÞ
into SOð5Þ.
On the other hand, black strings and their magnetic dual

(black 2-brane) central extensions Z½AB�
� , Z½AB�

�� sit in the 5 of
USpð4Þ, and they are embedded in the 50 (and 5) of the
U-duality group. Thus, they correspond to the decomposi-

tion 5ð0Þ ! 5 of SLð5;RÞ into SOð5Þ.
In our analysis, the corresponding central charges are

denoted by Zmn
el and Zmn

mag [m, n ¼ 1; . . . ; 5 are SOð5Þ
indices] for black holes and their magnetic duals, and by
Zm
el and Zm

mag for black strings and their magnetic duals.

B. N ¼ 2, D ¼ 7 supergravity

The global symmetry group of maximally supersymmet-
ric D ¼ 7 supergravity [27] is SLð5;RÞ. The bosonic field
content comprises the graviton, 14 scalars, 10 vectors, and
five two-form fields. Under the U-duality group SLð5;RÞ
these organize as

V i
m;

SLð5;RÞ
SOð5Þ i; m ¼ 1; . . . 5;

F½ij�
2 : 100; H3i: 5:

(7.2)

The corresponding charges will be denoted by pij, qij, pi,

qi. For near-horizon geometries AdS2 � S3 � T2 and
AdS3 � S2 � T2, there are two independent electric and
magnetic three-cycles, respectively, depending on which of
the two circles of T2 ¼ S11 � S12 is part of the cycle. The
corresponding three-charges will be denoted by pia, q

i
r

with a, r ¼ 1; 2.

C. AdS3 � S3 � S1

We start from the Ansatz

ds2 ¼ r2AdSds
2
AdS3

þ r2Sds
2
S3
þ r21d�

2
1;

H3i ¼ ei�AdS3 þ pi�S3 ;
(7.3)

for the near-horizon geometry. The central charges and the
relevant quadratic U-duality invariant are given by

Zmag;m ¼ J3V j
mpj; Zel;m ¼ J03ðV�1Þmiq

i;

I2 ¼ qipi ¼ Zmag;iZ
i
elðJ3J03Þ�1;

(7.4)

with J3 ¼ vTJ
0
3 ¼

�
vAdS3

vT

v
S3

�
1=2

. The effective potential can

be written as

Veff ¼ 1

2
Zm
magZ

m
mag þ 1

2
Zel;mZel;m: (7.5)

Using the Maurer-Cartan equations, we obtain
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rZm
mag ¼ Zn

magPmn; rZel;m ¼ �Zel;nPmn; (7.6)

with Pmn a symmetric and traceless matrix (Pmm ¼ 0).
Here, indices m, n are raised and lowered with �mn. For
the variation of the effective potential we thus obtain

rVeff ¼ ðZm
magZ

n
mag � Zel;mZel;nÞPmn �! 0: (7.7)

Equation (7.7) is solved by

Zm
mag ¼ 
Zel;m: (7.8)

In this case we find

VeffjrVeff�0 ¼ J3J
0
3jI2j ¼

vAdS3

vS3
jI2j; (7.9)

in agreement with (4.1). Extremization of F with respect to
the radii yields the black string central charge and near-
horizon geometry ((4.1)) with I2 ¼ I2 the SLð5;RÞ qua-
dratic invariant. Notice that this solution can be thought of
as the D ¼ 7 lift of the AdS3 � S3 solution studied in the
last section. The radius r1 of the additional S

1 is not fixed
by the attractor equations.

Finally let us consider the moduli space of this black
string solution. For this purpose we notice that upon SOð5Þ
rotation the solution can written in the form

Zm
mag ¼ 
Zel;m ¼ z�m1: (7.10)

This form is clearly invariant under SLð4;RÞ rotations. The
moduli space can then be written as

M BPS ¼ SLð4;RÞ
SOð4Þ : (7.11)

Alternatively, evaluating the Hessian at the solution one
finds

rrVeff ¼ 4z2P1nP1n (7.12)

a matrix with five strictly positive eigenvalues and nine
zeros. More precisely the 14 scalars in the symmetric
traceless 14 of SLð5;RÞ decompose under SOð4Þ 	
SUð2Þ � SUð2Þ into the following representations

14 ! ð2; 1Þ � ð1; 2Þ � ð1; 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
m2>0

� ð3; 3Þ|ffl{zffl}
m2¼0

: (7.13)

Notice that these nine moduli, together with the free radius
r1 and the 10 degrees of freedom associated toWilson lines
of the 10 vector fields along S1 sum up to 20 free parame-
ters characterizing the solution. This precisely matches the
dimension of the moduli space of the six-dimensional
solution of which the present solution is a lift. In other
words, in going from six to seven dimensions, an 11-
dimensional part of the moduli space translates into ‘‘geo-
metrical moduli’’ describing the circle radius and Wilson
lines. This will be always the case for all D> 6 solutions
under consideration here.

It is worth noticing that the solution with I2 � 0 can be
considered as an intersection of one 1

2 -BPS electric string

and one 1
2 -BPS magnetic black 3-brane, respectively, in the

50 and 5 of the D ¼ 7 U-duality group SLð5;RÞ [24]. The
corresponding supporting charge orbit is SLð5;RÞ

SLð4;RÞ�sR
4 [25],

but the common stabilizer of the two charge vectors is
SLð4;RÞ only, with resulting moduli space of the consid-
ered intersecting configuration given by Eq. (7.11).

D. AdS3 � S2 � T2

We start from the near-horizon Ansatz:

ds2 ¼ r2AdSds
2
AdS3

þ r2Sds
2
S2
þ r21d�1

2 þ r22d�2
2;

Fij
2 ¼ pij�S2 ; H3i ¼ ei�AdS3 þ

X
a¼1;2

pia�S2�S1a
;

(7.14)

where T2 ¼ S11 � S12. In particular, in this case there are
two magnetic three-cycles S2 � S1a which we label by a ¼
1; 2. The corresponding central charges are given by

Zmag;mn ¼ J2ðV�1ÞmiðV�1Þnjpij;

Za
mag;m ¼ J3b�

abV j
mpjb Zel;m ¼ J03ðV�1Þmiq

i;

(7.15)

with

J2 ¼ ðvAdS3vT2

vS2
Þ1=2;

J03 ¼ ð vAdS3

vS2vT2

Þ1=2;

J3a ¼ ðvAdS3vT2

vS2ðvS1a
Þ2Þ

1=2:

In terms of these charges one can build two U-duality
invariants

I 3 ¼ 1

8
	ijklmp

ijpklqm; ~I3 ¼ 1

2
piapjbp

ij	ab:

(7.16)

Note that the existence of ~I3 hinges on the fact that there
are two inequivalent magnetic three-cycles. In terms of the
central charges (7.15) the invariants can be written as

1

8
	ijklmZ

ij
magZkl

magZ
m
el ¼ J22J

0
3I3;

Zmag;iaZmag;jbZ
ij
mag	ab ¼ J2J3aJ3b	

ab~I3:

(7.17)

The effective potential is now given by

Veff ¼ 1

4
Zmag;mnZmag;mn þ 1

2
Zma
magZ

ma
mag þ 1

2
Zel;mZel;m:

(7.18)

The Maurer-Cartan equations give rV i
m ¼ V i

nPmn with
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Pmn symmetric and traceless. The variation of the central
charges is thus given by

rZmag;mn ¼ 2Zmag;k½mPn�k; rZma
mag ¼ Zna

magPmn;

rZel;m ¼ �Zel;nPmn:

Hence, we obtain

rVeff ¼ ð�Zmag;mkZmag;nk þ Zma
magZ

na
mag � Zel;mZel;nÞPmn

�! 0: (7.19)

By SOð5Þ rotation, the antisymmetric matrix Zmag;mn can

be brought into skew-diagonal form

Zmag;mn ¼ 2z1�1½m�n�2 þ 2z2�3½m�n�4: (7.20)

Plugging this into the attractor equation (7.19) one finds the
following solutions

(A)

Zmag;mn ¼ 2zð�1½m�n�2 þ �3½m�n�4Þ;
Zel;m ¼ z�m5; Zma

mag ¼ 0:
(7.21)

(B)

Zmag;mn ¼ 2z�1½m�n�2; Zel;m ¼ 0;

Za
mag;m ¼ z�a

m:
(7.22)

The corresponding effective potentials are given by

Veff;A ¼ 3

2
z2 ¼ 3

2
ðJ22J03jI3jÞ2=3 ¼ 3

2

v3
AdS3

v1=3

T2

vS2
jI3j2=3;

Veff;B ¼ 3

2
z2 ¼ 3

2
ðJ2J3;1J3;2j~I3jÞ2=3 ¼ 3

2

v3
AdS3

v1=3

T2

vS2
j~I3j2=3;
(7.23)

in agreement with (4.2) with I3 ¼ I3 and I3 ¼ ~I3 for the
solutions A and B, respectively. After the ~r-extremization
one finds again that the AdS and sphere radii and the
entropy function are given by the general formula (4.2).
Again, the radii ra of the two circles S

1
a are not fixed by the

extremization equations.
Let us finally consider the associated moduli spaces. We

start with solution A. The symmetry of (7.21) is Spð4;RÞ 	
SOð3; 2Þ. The moduli space is the quotient of this group by
its maximal compact subgroup

M BPS;A ¼ SOð3; 2Þ
SOð3Þ � SOð2Þ : (7.24)

More precisely, in terms of SOð3Þ � SOð2Þ representations
one finds that the 14 scalar components decompose accord-
ing to

Pmn: 14 ! 3þ � 3�|fflfflfflffl{zfflfflfflffl}
m2¼0

� 1þ2 � 1�2 � 10 � 50|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
m2>0

; (7.25)

subscripts referring to SOð2Þ charges. Indeed, evaluating
the Hessian

rrVeff ¼ 2PmpPnqðZmag;mpZmag;nq þ Zmag;mkZmag;nk�pq

þ Zma
magZ

na
mag�pq þ Zel;mZel;n�pqÞ;

at the solution (7.21) one finds a matrix with six vanishing
and eight strictly positive eigenvalues.
For solution B one finds as a symmetry SLð3;RÞ and

thus the moduli space

M BPS;B ¼ SLð3;RÞ
SOð3Þ : (7.26)

The scalars decompose into SOð3Þ representations accord-
ing to

Pmn: 14 ! 5m2¼0 � 2 � 3 � 3 � 1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
m2>0

: (7.27)

Indeed from the Hessian

rrVeffjB ¼ 6z2ðP1pP1p þ P2pP2pÞ; (7.28)

one finds a matrix with nine strictly positive and five
vanishing eigenvalues.
As mentioned above, at D ¼ 7 the charge orbit support-

ing one 1
2 -BPS black string (or black 2-brane) is given by

SLð5;RÞ
SLð4;RÞ�sR

4 [25]. On the other hand, the charge orbit sup-

porting one black hole (or black 3-brane) is
SLð5;RÞ

SLð3;RÞ�SLð2;RÞ�sR
6 and

SLð5;RÞ
SOð3;2Þ�sR

4 in the 1
2 -BPS and 1

4 -BPS

cases, respectively [25].
Solution A corresponds to an intersection of one 1

4 -BPS

black 3-brane (with charges in the 100 of SLð5;RÞ) with
one 1

2 -BPS black string [with charges on the 50 of

SLð5;RÞ]. The stabilizer of both charge vectors is
SOð3; 2Þ only, and thus the resulting moduli space of the
considered intersecting configuration is given by Eq. (7.24)
.
Solution B corresponds to an intersection of one 1

2 -BPS

black 3-branewith two parallel 12 -BPS black 2-branes (with

charges on two different 5s of SLð5;RÞ). Accordingly, the
stabilizer of the three charge vectors is SLð3;RÞ only, and
thus the resulting moduli space of the considered intersect-
ing configuration is given by Eq. (7.26).

E. AdS2 � S3 � T2

The analysis of the black hole solutions is very similar to
the previous one of the black strings replacing electric with
magnetic charges and vice versa. Now we start from the
near-horizon Ansatz:
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ds2 ¼ r2AdSds
2
AdS2

þ r2Sds
2
S3
þ r21d�1

2 þ r22d�2
2;

Fij
2 ¼ eij�AdS2 ; H3i ¼ pi�S3 þ

X
r¼1;2

eri�AdS2�S1r
;

(7.29)

where r ¼ 1; 2 labels the two inequivalent electric three-
cycles and T2 ¼ S11 � S12. The central charges and
U-duality invariants are given by

Zel;mn¼J02V
i
mV j

nqij;

Zr
el;m¼J03s�rsðV�1Þmjq

j
s;

Zmag;m¼J3V i
mpi;

I 0
3¼

1

8
	ijklmqijqklpm¼1

8
	ijklmZel;ijZel;klZmag;mðJ022 J3Þ�1;

~I 0
3¼1

2
qirq

j
sqij	

rs¼1

2
Zi
el;rZ

j
el;sZel;ij	

rsðJ02J03;1J03;2Þ�1;

(7.30)

with

J02 ¼ ðvAdS2

vTvS3
Þ1=2;

J3 ¼ ðvTvAdS2

vS3
Þ1=2;

J03s ¼ ðvAdS2ðvS1s
Þ2

vS3vT2

Þ1=2:

The two solutions of the associated attractor equations
are given by

(A)

Zel;mn ¼ 2zð�1½m�n�2 þ �3½m�n�4Þ;
Zmag;m ¼ z�m5; Za

el;m ¼ 0:
(7.31)

(B)

Zel;mn ¼ 2z�1½m�n�2; Zmag;m ¼ 0;

Za
el;m ¼ z�a

m:
(7.32)

The effective potentials, entropy function and near-horizon
geometry are given by the general formula (4.3) with I3
given by I 0

3 and
~I 0
3 for the cases A and B, respectively. The

analysis of the moduli spaces is identical to that of the
AdS3 cases and the results are again given by (7.24) and
(7.26), respectively.

Solution A has ~I 0
3 ¼ 0, which comes from qiaqjb	

ab ¼
0, meaning that the two 5’s are reciprocally parallel. On the
other hand, solution B has I 0

3 ¼ 0; this derives from the

condition 	ijklmqijqkl ¼ 0 for a D ¼ 7 black hole to be
1
2 -BPS [24].

VIII. MAXIMAL D ¼ 8

A. N ¼ 2, D ¼ 8 supersymmetry algebra

The maximal N ¼ 2, D ¼ 8 Poincaré supersymmetry
algebra has complex chiral supercharges (as inD ¼ 4) and
R-symmetry SUð2Þ �Uð1Þ ¼ Spinð3Þ � Spinð2Þ. Its cen-
tral extension reads as follows (see e.g. [19–21]):

fQA

;QB

�g ¼ C
�Z
ðABÞ þ 


��

�Z

½AB�
��

þ 
����

� ZðABÞ

����ðand H:c:Þ (8.1)

fQA

;Q _�jBg ¼ 
�


 _�
ZA
�jB þ 
���


 _�
ZA
���jB; (8.2)

where A, B ¼ 1; 2, so that the supercharges are SUð2Þ
doublets. The trace part of ZA

�jB is the momentum P��
A
B.

Black holes and their magnetic dual (black 4-brane)

central extensions ZðABÞ, ZðABÞ
���� sit in the ð3; 2Þ (and

ð30; 2Þ) of SUð2Þ �Uð1Þ, and they are embedded in the
ð3; 2Þ of the U-duality group SLð3;RÞ � SLð2;RÞ.
On the other hand, dyonic black membrane central ex-

tensions Z½AB�
�� are in the ð1; 2Þ of SUð2Þ �Uð1Þ, and they

are embedded in the ð1; 2Þ of SLð3;RÞ � SLð2;RÞ.
Black strings and their magnetic dual (black 3-brane)

central extensions ZA
�jB, Z

A
���jB sit in the ð30; 1Þ (and ð3; 1Þ)

of SUð2Þ �Uð1Þ [namely in the adjoint of SUð2Þ, and they
do not carry Uð1Þ charge, because they are real], and they
are embedded in the ð3; 1Þ of the U-duality group
SLð3;RÞ � SLð2;RÞ.
In our analysis, the corresponding central charges are

denoted by Zel;iA and Zmag;iA (i ¼ 1; 2; 3 and A ¼ 1; 2) for

black holes and their magnetic duals, by Zel;i and Zmag;i for

black strings and their magnetic duals, and by ZA for
dyonic black 2-branes.

B. N ¼ 2, D ¼ 8 supergravity

The bosonic field content of D ¼ 8 supergravity [28]
with maximal supersymmetry includes, beside the gravi-
ton, scalars in the symmetric manifold

V i
m;V A

B:
SLð3;RÞ
SOð3Þ � SLð2;RÞ

SOð2Þ ; (8.3)

with i, m ¼ 1; . . . ; 3, A ¼ 1; 2, and forms in the following
representations of the SLð3;RÞ � SLð2;RÞ U-duality
group:

FiA
2 : ð3; 2Þ; H3i: ð30; 1Þ; FA

4 : ð1; 2Þ: (8.4)

The Lagrangian carries only one three-form potential C,
whose field strength F4 together with its magnetic dual
spans the SLð2;RÞ doublet FA

4 .
The scalar vielbeins V i

m, V A
B, corresponding to the

two factors, vary as

rV i
m ¼ V i

nPmn; rV A
B ¼ V A

CPBC; (8.5)
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with Pmn and PAB, symmetric and traceless. Here we raise
and lower indices m and A with �mn and �BA, respectively.

C. AdS3 � S3 � T2

We start with the AdS3 � S3 � T2 near-horizon Ansatz

ds2 ¼ r2AdSds
2
AdS3

þ r2Sds
2
S3
þ X

s¼1;2

r2sd�s
2;

F2;iA ¼ qiA�T2 ; H3i ¼ pi�S3 þ ei�AdS3 ;

F4 ¼
X
r¼1;2

er�AdS3�S1r
þ X

a¼1;2

pa�S3�S1a
:

(8.6)

Depending on the choice of the circle within T2 ¼ S11 �
S12, there are two inequivalent electric and magnetic four-
cycles. The four-form charges combine into the SLð2;RÞ
doublet QAr ¼ ðqr; prÞ.

The central charges are given by

Zmag;m ¼ J3ðV�1Þmjpj; Zm
el ¼ J03V i

mqi;

Zr
A ¼ J4s�

srðV�1ÞABQBs;
(8.7)

with

J3 ¼ ðvAdS3vT2

v3
S

Þ1=2;

J03 ¼ ð vAdS3

vS3vT2

Þ1=2;

J4s ¼ ðvAdS3vT2

vS3ðvS1s
Þ2Þ

1=2:

The U-duality invariants that can be built with these
charges are

I 2 ¼ piq
i ¼ Zel;iZmag;iðJ3J03Þ�1;

~I2 ¼ qArqBs	
AB	rs ¼ Zel;ArZelBs	

AB	rsðJ4;1J4;2Þ�1:

(8.8)

Note that the existence of two inequivalent electric four-

cycles is crucial for the existence of ~I2. The effective
potential can be written as

Veff ¼ 1

2
Zmag;mZmag;m þ 1

2
Zm
elZ

m
el þ

1

2
ZArZAr; (8.9)

and the attractor equations take the form

ðZmag;mZmag;n � Zm
elZ

n
elÞPmn þ ðZArZBrÞPAB �1 0: (8.10)

We will consider the following two solutions to these
equations

(A)

Zmag;m ¼ 
Zm
el ¼ z�m1; ZAr ¼ 0: (8.11)

(B)

Zmag;m ¼ Zm
el ¼ 0; ZAr ¼ z�Ar: (8.12)

The effective potentials at the horizon become

VeffjA ¼ z2 ¼ J3J
0
3jI2j ¼

vAdS3

vS3
jI2j;

VeffjB ¼ z2 ¼ J4;1J4;2j~I2j ¼
vAdS3

vS3
j~I2j;

(8.13)

respectively. Plugging this into the entropy function and
extremizing with respect to the radii one recovers the near-
horizon geometry central charge (4.1) with I2 taken as I2

or ~I2 for the solution A and B, respectively.
Let us consider the associated moduli spaces. The sym-

metry groups leaving (8.11) and (8.12) invariant are
SLð2;RÞ2 and SLð3;RÞ, respectively. The moduli spaces
are thus

M BPS;A ¼
�
SLð2;RÞ
SOð2Þ

�
2
; MBPS;B ¼ SLð3;RÞ

SOð3Þ :

(8.14)

The same results follow from evaluating the Hessians at the
solutions

rrVeff;A ¼ 2z2P2
1m; rrVeff;B ¼ 2z2P2

AA; (8.15)

which shows that one has 3(2) strictly positive and 4(5)
vanishing eigenvalues for the solution A(B), in agreement
with the dimensions of the moduli spaces (8.14).
At D ¼ 8 there are two dyonic 1

2 -BPS black 2-branes,

whose charge orbits are SLð3;RÞ�SLð2;RÞ
SLð3;RÞ�R . The 1

2 -BPS black

strings (and their dual black 3-branes) are in the ð30; 1Þ and
ð3; 1Þ of the D ¼ 8 U-duality group SLð3;RÞ � SLð2;RÞ,
and their individual charge orbit is SLð3;RÞ�SLð2;RÞ

ðSLð2;RÞ�sR
2Þ�SLð2;RÞ [25].

The black holes (and their dual black 4-branes) are in the
ð3; 2Þ and ð30; 2Þ of SLð3;RÞ � SLð2;RÞ, and their individ-
ual charge orbit is SLð3;RÞ�SLð2;RÞ

SLð2;RÞ�sR
2 and SLð3;RÞ�SLð2;RÞ

GLð2;RÞ�sR
3 for the

1
4 -BPS and 1

2 -BPS cases, respectively [25].

In the considered AdS3 � S3 � T2 near-horizon geome-
try, solution A corresponds to the intersection of one 1

2 -BPS

black string and one 1
2 -BPS black 3-brane. The stabilizer of

both charge vectors is SLð2;RÞ � SLð2;RÞ only, and thus
the resulting moduli space of the considered intersecting

configuration is

�
SLð2;RÞ
SOð2Þ

�
2
, given in the left-hand side of

Eq. (8.14).
On the other hand, solution B corresponds to the inter-

section of two dyonic 1
2 -BPS black 2-branes. Thus the

stabilizer of both charge vectors is SLð3;RÞ only, and the
resulting moduli space of the considered intersecting con-

figuration is SLð3;RÞ
SOð3Þ , given in the right-hand side of Eq.

(8.14).

INTERSECTING ATTRACTORS PHYSICAL REVIEW D 79, 065031 (2009)

065031-15



D. AdS3 � S2 � T3

The near-horizon Ansatz is given by

ds2 ¼ r2AdSds
2
AdS3

þ r2Sds
2
S2
þ X

s¼1;2;3

r2sd�s
2;

FiA
2 ¼ piA�S2 ; H3i ¼

X
a¼1;2;3

pa
i �S2�S1a

;

FA
4 ¼ X

a¼1;2;3

eAa�AdS3�S1a
þ X

a¼1;2;3

1

2
j	abcjpA

a�ðS2�S1
b
�S1cÞ;

(8.16)

with T3 ¼ S11 � S12 � S13. In this near-horizon geometry

there are thus three inequivalent electric and magnetic
four-cycles and three magnetic three-cycles. The four-
form charges again combine into the SLð2;RÞ doublet
QAa ¼ ðqa; paÞ.

The central charges take the form

ZmA
mag ¼ J2V B

AV k
mpkB;

Za
mag;m ¼ J3b�

baðV�1Þmjpb
j ;

ZAa ¼ J4b�abðV�1ÞABQBb;

(8.17)

with

J2 ¼ ðvAdS3vT3

vS2
Þ1=2;

J3a ¼ ðvAdS3vT3

vS2ðvS1a
Þ2Þ

1=2;

J4a ¼ ðvAdS3ðvS1a
Þ2

vS2vT3

Þ1=2:

The U-duality invariants are given by

I 3 ¼ piApa
i QAa ¼ ZiA

magZmag;iaZAaðJ2J3aJ4aÞ�1;

~I3 ¼ 1

3
pa
i p

b
jp

c
k	

ijk	abc

¼ 1

3
Za
mag;iZ

b
mag;jZ

c
mag;k	

ijk	abcðJ3;1J3;2J3;3Þ�1:

(8.18)

From variation of the effective potential

Veff ¼ 1

2
ZmA
magZ

mA
mag þ 1

2
Za
mag;mZ

a
mag;m þ 1

2
ZArZAr; (8.19)

we thus obtain the attractor equations

ðZmA
magZ

nA
mag � Za

magmZ
a
magnÞPmn �! 0;

ðZmA
magZ

mB
mag � ZArZBrÞPAB �! 0;

(8.20)

with Pmn and PAB symmetric and traceless.
We will consider the solutions

(A)

ZmA
mag ¼ 0 ¼ ZAa; Za

mag;m ¼ z�a
m: (8.21)

(B)

ZmA
mag ¼ z�m1�A1; Za

mag;m ¼ �a1�m1z;

ZAr ¼ �r1�A1z:
(8.22)

The effective potentials become

Veff;A ¼ 3

2
z2 ¼ 3

2
ðJ2J3aJ4aj~I3Þ2=3

¼ 3vAdS3v
1=3

T3

2vS2
j~I3j2=3;

Veff;B ¼ 3

2
z2 ¼ 3

2
ðJ3;1J3;2J3;3jI3jÞ2=3

¼ 3vAdS3v
1=3

T3

2vS2
jI3j2=3;

(8.23)

respectively, and ~r-extremization leads to the near-horizon

geometry and central charge (4.2) with I3 ¼ ~I3 and I3 ¼
I3 for the cases A and B, respectively.
The symmetry group leaving (8.21) and (8.22) invariant

is SLð2;RÞ and the moduli space thus given by

M BPS;A=B ¼ SLð2;RÞ
SOð2Þ : (8.24)

Alternatively the moduli space can be determined from the
vanishing eigenvalues of the Hessians

rrVeff;A ¼ 2z2ðP2
1m þ P2

2mÞ;
rrVeff;B ¼ 4z2P2

1n þ 6z2P2
1A;

(8.25)

respectively, showing five strictly positive and two vanish-
ing eigenvalues in each case.
We now derive the nature of the moduli spaces of

solutions A and B from the charge orbits discussed in [25].
Solution A corresponds to an intersection of three black

3-branes, with ~I3 ¼ detðpa
i Þ � 0 but I3 ¼ piApa

i QAa ¼ 0.

The charge orbit for each of them is SLð3;RÞ�SLð2;RÞ
ðSLð2;RÞ�R2Þ�SLð2;RÞ , and

the common stabilizer is the SLð2;RÞ commuting with

SLð3;RÞ. This agrees with the moduli space SLð2;RÞ
SOð2Þ jA of

solution A [see Eq. (8.24)].
Solution B corresponds to the intersection of three par-

allel black 2-branes, three parallel black 3-branes, and
1
2 -BPS black 4-branes, respectively, characterized by the

constraints

QAaQBb	
AB ¼ 0; pa

i p
b
j 	

ijk ¼ 0; piApjB	AB ¼ 0;

(8.26)

with I3 ¼ piApa
i QAa � 0 and ~I3 ¼ 0.
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The three parallel 3-branes have a common charge orbit
SLð3;RÞ�SLð2;RÞ

ðSLð2;RÞ�sR
2Þ�SLð2;RÞ , whereas the parallel 2-branes have a

common charge orbit SLð3;RÞ�SLð2;RÞ
SLð3;RÞ�R1 , and the 1

2 -BPS 4-

brane has charge orbit SLð3;RÞ�SLð2;RÞ
ðGLð3;RÞ�sR

2Þ�R1 [25].

Since the coset is factorized, the common stabilizer of
the three parallel 3-branes and of 1

2 -BPS 4-brane is

SLð2;RÞ inside SLð3;RÞ, and this agrees with the moduli

space SLð2;RÞ
SOð2Þ jB of solution B [see Eq. (8.24)].

E. AdS2 � S3 � T3

This case is very similar to the previous discussion. We
start with the near-horizon Ansatz

ds2 ¼ r2AdSds
2
AdS2

þ r2Sds
2
S3
þ X

s¼1;2;3

r2sd�s
2;

FiA
2 ¼ eiA�AdS2 ; H3i ¼

X
a¼1;2;3

eri�AdS2�S1r
;

F4 ¼
X

a;b;c¼1;2;3

1

2
j	abcjeAc�AdS2�S1a�S1

b
þ X

a¼1;2;3

pA
a�S3�S1a

;

(8.27)

with T3 ¼ S11 � S12 � S13. Again, there are thus three in-

equivalent electric and magnetic four-cycles. In addition,
there are three inequivalent electric three-cycles.

The associated central charges and U-duality invariants
are given by

Zel;mA ¼ J02ðV�1ÞABðV�1ÞmkqkB;

Zmr
el ¼ J03s�srV j

mqjs;

ZAr ¼ J4s�rsðV�1ÞABQBs;

I 0
3 ¼ qiAq

i
aQ

Aa ¼ Zel;iAZ
ia
elZ

A
a ðJ02J03aJ04aÞ�1;

~I 0
3 ¼ 1

3
qiaq

j
bq

k
c	ijk	

abc

¼ 1

3
Zi
el;aZ

j
el;bZ

k
el;c	ijk	

abcðJ3;1J3;2J3;3Þ�1; (8.28)

with

J02 ¼ ðvAdS2

v3
SvT3

Þ1=2;

J03r ¼ ðvAdS2ðvS1r
Þ2

vS3vT3

Þ1=2;

J4r ¼ ðvAdS2vT3

vS3ðvS1r
Þ2Þ

1=2:

The possible solutions of the attractor equations are
(A)

Zel;mA ¼ 0 ¼ ZAs; Zmr
el ¼ z�mr;

(B)

Zel;mA ¼ z�m1�A1 Zmr
el ¼ �r1�m1z;

ZAr ¼ �r1�A2z:
(8.29)

The effective potentials, entropy function, and near-
horizon geometry are given by the general formula (4.3)

with I3 ¼ I3 and I3 ¼ ~I3 for the cases A and B, respec-
tively. The analysis of the moduli spaces is identical to that
on the AdS3 � S2 case and the results are given again by
(8.24).

IX. THE LIFT TO ELEVEN DIMENSIONS

The attractor solutions we have discussed throughout
this paper have a simple lift to 11-dimensional supergrav-
ity. The black string solutions with AdS3 � S3 � TD�6

near-horizon geometry follow from dimensional reduction
of M2M5 branes intersecting on a string. The supersym-
metric solutions with AdS3 � S2 � TD�5 follow from re-
ductions of triple M2 intersection on a string. Finally
AdS2 � S3 � TD�5 near-horizon geometries correspond
to triple M5 intersections on a timelike line. The orienta-
tions of the M2, M5 branes in the three cases are summa-
rized in Table I.
After dimensional reductions down to D ¼ 6; 7; 8 di-

mensions the solutions expose a variety of charges with
respect to forms of various rank. Indeed, a single brane
intersection in D ¼ 11 leads to different solutions after
reduction to D-dimensions depending on the orientation of
the M-branes along the internal space. Different solutions

TABLE I. Supersymmetric M intersections.

0 1 2 3 4 5 6 7 8 9 10 Near-horizon

M2 . . . . . .         . . . AdS3 � S3 � T5

M5 . . . . . .     . . . . . . . . . . . . 
M2 . . .         . . . . . . AdS2 � S3 � T6

M2 . . .       . . . . . .  
M2 . . .     . . . . . .    
M5 . . . . . .      . . . . . . . . . . . . AdS3 � S2 � T6

M5 . . . . . .    . . . . . .   . . . . . .
M5 . . . . . .    . . . . . . . . . . . .  
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carry charges with respect to a different set of forms in the
D-dimensional supergravity. They can be fully character-
ized by U-duality invariants built out of the brane charges.
The list of U-duality invariants leading to extremal black
p-brane solutions in D ¼ 6; 7; 8 dimensions are listed in
Table II. As expected, there is a one-to-one correspondence
between the entries in this table and the solutions found in
the previous sections. We list also theU-duality groups, the
representation content and the corresponding moduli
spaces.

X. FINAL REMARKS

In the present paper we analyzed the attractor nature of
solutions of some supergravity theories inD ¼ 6; 7; 8, with
static, asymptotically flat, spherically symmetric extremal
black p-brane backgrounds and scalar fields turned on.

We have found that for such theories, with the near-
horizon geometry containing a factor AdSpþ2 (p ¼ 0; 1), a

generalization of the entropy function [10] and effective
potential [4–8] formalisms occurs, which allows one to
determine the scalar flow and the related moduli space
near the horizon. The value of the entropy function at its
minimum is given in terms ofU-duality invariants built out
of the brane charges and it measures the central charges of
the dual CFT living on the AdS boundary. The resulting
central charges were shown to satisfy a Bekenstein-
Hawking-like area law generalizing the familiar results
of black hole physics.

In order to make further contact with previous work on
p-brane intersections and their supersymmetry-preserving
features [3], we have found that for maximal supergravities
in D space-time dimensions, the moduli spaces of attrac-
tors with AdS3 � S3 � TD�6 near-horizon geometries

have rank 10�D. Actually, this holds also for the D ¼
4 case (with near-horizon geometryAdS2 � S2) in the non-
BPS configuration, with the related moduli space given by

the rank-6 symmetric space
E6ð6Þ

USpð8Þ [29].
Furthermore, for D-dimensional maximal supergrav-

ities, the moduli spaces of attractors with AdS3 � S2 �
TD�5 (or AdS2 � S3 � TD�5) near-horizon geometries
have rank 9�D. This holds also for the D ¼ 5 case
(with near-horizon geometry AdS3 � S2 or AdS2 � S3)
in the 1

8 -BPS configuration, with the related moduli space

given by the rank-4 symmetric space
F4ð4Þ

USpð2Þ�USpð6Þ [29,30].
These results imply that the dilatons of the p-brane

intersections in D ¼ 11 described in [3] are not all on
equal footing, because only one or two (combinations) of
them get(s) fixed at the horizon, while the other ones have
asymptotical values which enter the flow, although the
function F does not depend on such values.
Finally, we would like to comment on the fact that the

half-maximal nonchiral (1, 1), D ¼ 6 theory analyzed in
Sec. V may be considered as type IIA compactified on K3
[31]. The result obtained in the present paper for the
AdS3 � S3 near-horizon geometry supports the conjecture
of [32]. On the other hand, we do not find an agreement
with the other Ansätze for the near-horizon geometry,
because we only find solutions where the charges of strings
(or that of their magnetic duals) are turned on.
We note that the techniques we have developed here

apply to any supergravity flow ending on an AdS horizon
even in presence of higher derivative terms and gaugings. It
would be interesting to apply this formalism to the study of
higher derivative corrections to central charges in unga-
uged and gauged supergravities extending the black hole
results found in [33,34]. The study of non-BPS black p-

TABLE II. Electric and magnetic charges for M-brane intersections. p ¼ 0; 1 corresponds to intersections on a black hole and a
black string, respectively. qnðpnÞ denotes the electric(magnetic) charge of the brane solution and n specifies the rank of the form.

d p U-duality Charges Reps. Moduli space

6 1 SOð5; 5Þ p3q3 10� 10 SOð5;4Þ
SOð5Þ�SOð4Þ

1 p2p2p3 16s � 16s � 10 SOð4;3Þ
SOð4Þ�SOð3Þ

0 q2q2q3 16c � 16c � 10 SOð4;3Þ
SOð4Þ�SOð3Þ

7 1 SLð5Þ p3q3 5� 50 SLð4Þ
SOð4Þ

1 p2p2q3 100 � 100 � 5 SOð3;2Þ
SOð3Þ�SOð2Þ

1 p3p3p2 50 � 50 � 100 SLð3Þ
SOð3Þ

0 q2q2p3 10� 10� 50 SOð3;2Þ
SOð3Þ�SOð2Þ

0 q3q3q2 5� 5� 10 SLð3Þ
SOð3Þ

8 1 SLð3Þ � SLð2Þ p3q3 ð30; 1Þ � ð3; 1Þ ðSLð2ÞSOð2ÞÞ2
1 p4q4 ð1; 2Þ � ð1; 2Þ SLð3Þ

SOð3Þ
1 p2p3q4 ð3; 2Þ � ð30; 1Þ � ð1; 2Þ SLð2Þ

SOð2Þ
1 p3p3p3 ð30; 1Þ � ð30; 1Þ � ð30; 1Þ SLð2Þ

SOð2Þ
0 q2q3p4 ð30; 2Þ � ð3; 1Þ � ð1; 2Þ SLð2Þ

SOð2Þ
0 q3q3q3 ð3; 1Þ � ð3; 1Þ � ð3; 1Þ SLð2Þ

SOð2Þ
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brane flows along the lines of [35] also deserves further
investigations.
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