52 research outputs found

    Spatial and Temporal Analysis of Dengue Cases in Peninsular Malaysia: A five-year analysis from 2016 to 2020

    Get PDF
    Dengue fever is one of the most common vector-borne diseases spread by Aedes albopictus and Aedes aegypti mosquitos. The regional and temporal trends of dengue cases in East Malaysia are investigated in this study. The study aims to assess the prevalence of dengue cases across 91 districts in Peninsular Malaysia from 2016 to 2020 and, hence, to identify dengue disease's hotspot and cold spot regions. By using ArcGIS, summarised yearly data of dengue cases were analysed. The study results showed that dengue cases mainly occurred in the central part of Peninsular Malaysia. Keywords: GIS; Vector-borne diseases; Aedes; Spatial epidemiology eISSN: 2398-4287 © 2022. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open access article under the CC BYNC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians/Africans/Arabians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia. DOI: https://doi.org/10.21834/ebpj.v7i20.348

    Short-term field decomposition of pineapple stump biochar in tropical peat soil.

    Get PDF
    The transformation of biochar on tropical peat is yet to be studied as all previous studies have been conducted on mineral or forest soils. The objectives of this study were to investigate the physical and chemical changes experienced by pineapple stump biochar (PSB) in tropical peat and to determine the short-term decomposition model of PSB in a C-rich environment. Elemental composition was determined using CHNS-O analyzer and surface area with Brunauer-Emmett Teller (BET) method. Surface chemistry and structural study were conducted with Fourier Transform Infrared (FTIR) spectroscopy and 13C solid state Nuclear Magnetic Resonance (NMR) spectroscopy, respectively. The PSB short-term decomposition was conducted with a litter bag study and best fitted into the hyperbolic decay model compared to exponential decay model because no significant mass loss was detected after 4 months. The stagnant phase was probably due to interaction with metals from peat. Redox reaction was prominent on the surface and structural chemistry. Surface oxidation of PSB produced more O-functionalities (hydroxyl, carboxylic and phenolic) and achieved chemical recalcitrance after 12 months. The carbon structure was reduced or saturated causing a decrease in electronegativity. Further PSB decomposition probably depends on biotic decomposition

    Evaluation of Respiratory Symptoms, Spirometric Lung Patterns and Metal Fume Concentrations among Welders in Indoor Air-Conditioned Building at Malaysia

    Get PDF
    Welding is one of the fundamental processes for metal joining in automotive industries and there is an increasing concern over occupational lung disease among welder due to exposure towards welding fumes. A lung disease questionnaire (ATS-DLD-78) was used to record the presence of respiratory symptoms among welders and in assessing lung function assessment, FEV1, FVC and FEV1/FVC are considered for identifying the lung condition; normal, obstructive or restrictive. The data were tabulated and subjected to logistic and multivariate analyses. Meanwhile, in order to trace metal in welders’ body, this study utilized a non-invasive approach of toenail as a biomarker. Lung functions decrement was established in linear regression for FEV1 and FEV1/FVC respectively although not statistically significant. Analysis conducted revealed the presence of the following trace elements concentration in ascending sequence: As < Al < Cu < Mn < Cr < Ni < Co < Fe (in the toenail) and Co < Al < Cu < Ni < As < Cr < Fe < Mn (in the cassette), respectively. The results validated the postulation that toenail metals composition shared a similar route of exposure with an anthropogenic source of activity. It is suggested a longer follow-up study is required to assess individual effects on lung function systems and the incidence of respiratory diseases among welders and this study indicates that toenail is a reliable biomarker of metal-workplace pollution and suitable for acquiring chronological information of welding fumes exposure

    The relationship between daily maximum temperature and daily maximum ground level ozone concentration

    Get PDF
    Ground-level ozone is one of the dominant criteria pollutants that contribute to unhealthy days in ambient air measurements throughout Malaysia. In addition to VOCs and NOx, meteorological factors such as insolation and temperature influence the formation of ground-level ozone. For this reason, the relationship between daily maximum temperature and variation of ground-level ozone concentrations using 10 years of data (2000-10, excluding 2008) was scrutinized statistically at two stations representing urban and industrial areas in Terengganu State, Malaysia. We found that there is a positive linear correlation between maximum daily temperature and maximum daily ozone concentration with correlation coefficients of 0.684 and 0.605 for urban and industrial areas, respectively. Nevertheless, the long-term variation of daily maximum temperature and daily maximum ozone concentration for these two stations shows that the levels were higher in the industrial rather than the urban area. The results indicate that surrounding activities and temperature play vital roles in influencing ground-level ozone concentrations in Terengganu. Furthermore, ozone concentrations are highest for air masses characterized by dry, warm conditions during the southwest monsoon and are usually associated with the generation of haze episodes in the Malaysian Peninsula

    Different Approaches of Multiple Linear Regression (MLR) Model in Predicting Ozone (O3) Concentration in Industrial Area

    Get PDF
    Meteorological conditions and other gaseous pollutants generally impacted the development of ozone (O3) in the atmosphere. The purpose of this study was to create the best O3 model for forecasting O3 concentrations in the industrial area and to determine the variables that affect O3 concentrations. Five-year data of meteorological and gaseous pollutants were used to analyze and develop the prediction model. Based on three distinct techniques, three separate multiple linear regression (MLR) prediction models of O3 concentration were developed. MLR3 had the highest correlation coefficient of 0.792 during development as compared to models MLR1 and MLR2. MLR2 was deemed the best O3 prediction model, however, since it had the lowest error values of root mean square error (3.976) and mean absolute error (3.548) when compared to other models. The establishment of an O3 prediction model can offer local governments with early information that could help them reduce and manage air pollution emissions

    Spatio-Temporal Modelling of Noise Pollution

    Get PDF
    An undesired or hazardous outdoor sound produced by human activities is referred to as environmental noise. For example, the noise emitted through industrial activities and transportation networks such as road, rail and air traffic. In Malaysia, most of the schools located very close to the roadside and near busy places such as cities, shops, and residential areas. This study aims to analyze the environmental noise in terms of spatial and temporal analysis in two primary schools in Terengganu State.  The noise monitoring had conducted in two (2) primary schools with different land use; residential area (Batu Rakit Primary School) and commercial area (Paya Bunga Primary School) on the school and non-school days by using Sound Level Meter (SLM). The spatial mapping had constructed by using SketchUp® 2018 and Surfer® version 11 software. The noise level between both study areas was significantly different based on a p-value of less than 0.05. It also surpassed the Department of Environment (DOE) of Malaysia's permitted limit, with the Equivalent Noise Level (LAeq) in residential areas being greater than in commercial areas due to traffic volume and noise from nearby activities. Lastly, the area near the roadside has higher critical noise pollution compared with the location that furthers from the roadside. In conclusion, this study is useful in creating awareness to the public about the noise pollution effect on primary school students and is also can be used for mitigation measures to have a better place for students to study

    Different Approaches of Multiple Linear Regression (MLR) Model in Predicting Ozone (O3) Concentration in Industrial Area

    Get PDF
    Meteorological conditions and other gaseous pollutants generally impacted the development of ozone (O3) in the atmosphere. The purpose of this study was to create the best O3 model for forecasting O3 concentrations in the industrial area and to determine the variables that affect O3 concentrations. Five-year data of meteorological and gaseous pollutants were used to analyze and develop the prediction model. Based on three distinct techniques, three separate multiple linear regression (MLR) prediction models of O3 concentration were developed. MLR3 had the highest correlation coefficient of 0.792 during development as compared to models MLR1 and MLR2. MLR2 was deemed the best O3 prediction model, however, since it had the lowest error values of root mean square error (3.976) and mean absolute error (3.548) when compared to other models. The establishment of an O3 prediction model can offer local governments with early information that could help them reduce and manage air pollution emissions

    Short-term field decomposition and physico-chemical transformation of jatropha pod biochar in acidic mineral soil

    Get PDF
    Details regarding field decomposition and transformation of biochar in Malaysia are scarce. The objectives of this study were to investigate the physico-chemical changes experienced by Jatropha pod biochar (JPB) in acidic mineral soil under field condition. Elemental composition was determined using CHNS-O analyzer and surface area with Brunauer-Emmett-Teller (BET) method. The JPB surface chemistry and structure were studied using the Fourier Transform Infrared (FTIR) spectroscopy and 13C solid state Nuclear Magnetic Resonance (NMR) spectroscopy, respectively. The JPB short-term decomposition was investigated by using a litter bag study and decomposition data were best fitted by a hyperbolic decay model compared to an exponential decay model because no significant dry weight loss was detected after 4 months. Two phases (volatile and near stagnant) were detected for JPB field decomposition. The volatile phase was due to rapid loss of labile fraction such as carbohydrate during the initial 4 months. The near stagnant phase was probably due to adsorption of organic matter and soil minerals. The JPB was fragmented into smaller pieces, encouraging surface adsorption. Redox reaction was prominent as shown by the production of hydroxyl, carboxylic and phenolic functional groups. The JPB became more recalcitrant after 12 months of application to the soils

    Contribution of aerosol species to the 2019 smoke episodes over the east coast of peninsular Malaysia.

    Get PDF
    Large-scale biomass burning (BB) emits large amounts of aerosols that lead to transboundary smoke events and adversely impacts human health, whilst causing societal and environmental issues. High ambient PM2.5 concentration in the year 2019 based on New Malaysia Ambient Air Quality Standard (NMAAQS) was identified as high pollution episodes, HP1 and HP2 on the east coast Peninsular Malaysia (ECPM). Meanwhile, the low PM2.5 concentration episodes are known as LP1 and LP2. The transboundary smoke events in Indochina and Indonesia are linked to HP1 (March–April) and HP2(August–September), respectively from backward trajectory and MERRA-2 model re-analyses weather data. The correlation analysis showed a significantly strong positive correlation (r) of black carbon (HP1: 0.91; HP2: 0.96), organic carbon (HP1: 0.90; HP2: 0.94), and sulphate (HP1: 0.80; HP2: 0.61) with the aerosol optical depth (AOD) levels during high pollution episodes. The synoptic weather condition and inter-monsoon in HP1 and southwest monsoon in HP2 introduce strong wind speed and favourable wind pattern that can initiate the long-range transport of high AOD and PM2.5 to the ECPM region. In conclusion, this study demystified the sources of BB emissions, the transport route of transboundary smoke events, their influence factors during different high pollution periods, and the links between aerosol species from local and non-local emissions with AOD levels and PM2.5 concentrations along the ECPM, which altogether provide crucial information on climate variability signal and can help in developing a corresponding strategy for high pollution episodes
    corecore