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1. Introduction 

The expansion in the industrial sector, such as in the production of petrochemical, polymer, steels, and manufacturing 

in East Coast Peninsular Malaysia, has become one factor that declines the air quality in Terengganu [1], [2]. These 

industrial activities emit an uncontrolled amount of air pollutants into the atmosphere. The rapid growth in industrial area 

can increase the traffic that brings consequence to air pollutant emission into the atmosphere [3]. The emission of air 

pollutants is 20% to 25% of air pollutants from the industrial sector, such as through power plants, combustion activities, 

refineries, and chemical reactions. Meanwhile, 70% to 75% of air pollutants came from mobile sources due to high 

volume traffic during peak hours due to the incomplete combustion process [4]. The World Health Organisation [5] has 

included the ground-level ozone (O3) in six criteria pollutants, which have high-risk potential to human health. In 2020, 

the Department of Environment (DOE) Malaysia [6] had set a permissible limit of ground-level O3 concentration in the 

Abstract: Meteorological conditions and other gaseous pollutants generally impacted the development of ozone (O3) 

in the atmosphere. The purpose of this study was to create the best O3 model for forecasting O3 concentrations in the 

industrial area and to determine the variables that affect O3 concentrations. Five-year data of meteorological and 

gaseous pollutants were used to analyze and develop the prediction model. Based on three distinct techniques, three 

separate multiple linear regression (MLR) prediction models of O3 concentration were developed. MLR3 had the 

highest correlation coefficient of 0.792 during development as compared to models MLR1 and MLR2. MLR2 was 

deemed the best O3 prediction model, however, since it had the lowest error values of root mean square error (3.976) 

and mean absolute error (3.548) when compared to other models. The establishment of an O3 prediction model can 

offer local governments with early information that could help them reduce and manage air pollution emissions. 
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New Malaysia Ambient Air Quality Standard (NMAAQS) in which cannot exceed 0.18 ppm for an hour and 0.1 ppm for 

8 hours. 

Tropospheric ozone, commonly known as ground-level O3, is a highly phytotoxic pollutant. Photochemical and 

oxidation reactions in the presence of sunlight and its precursors, such as nitrogen oxide (NOx) and volatile organic 

compounds (VOCs), produce O3, which is released into the atmosphere by both human and natural processes [7]. The 

interaction between NOx and VOCs under sunlight resulted in O3 secondary pollutant. The burning of fossil fuels has 

become the primary source of elevated O3 levels in the atmosphere [8]. O3 is formed when oxygen (O2) is split up by 

ultraviolet radiation, creating an oxygen atom. The unstable and highly reactive oxygen atom will bind with O2 molecules 

and form O3 molecules [9]. Therefore, meteorological factors had become the primary influence contributing to high O3 

concentration in the atmosphere. Favorable meteorological circumstances, such as high ambient temperature and low 

relative humidity, accelerate the photochemical process of O3 precursor, resulting in a high concentration of O3 in the 

atmosphere [9], [10]. Wind helps O3 to travel a hundred miles and thus affecting areas downwind. Stagnant wind 

conditions cause a high concentration of air pollution [11]. The El Nino event and the southwest monsoon (SWM) in 

Malaysia had a significant effect on the production of O3 concentrations in the atmosphere [10], [12].  

Uncontrolled O3 emission in the atmosphere raises the risk-potential to human health, ecology, and environment. 

The massive amount of O3 concentration in the atmosphere can have long-term and short-term effects, especially for 

certain human groups such as sensitive people like children and the elderly [13], [14]. Therefore, a high O3 concentration 

can cause serious illnesses such as problems in the cardiovascular system, respiratory system, cancer, and even mortality 

when people are exposed to it for the long term [13], [15], [16]. Furthermore, a significant high O3 concentration in the 

atmosphere can interrupt the ecosystem by inhibiting plant growth, thus resulting in the forest's abnormal development 

[17]. It also disrupts symbiotic relationship, regular plant-parasite interaction and increases species extinction, which can 

cause ecosystem functions impairment [18]. The O3 concentration increase in the atmosphere will also increase the 

atmosphere temperature, resulting in global warming and climate change phenomena [19]. 

The multiple linear regression (MLR) model applied globally to forecast air pollution, as it can be computed and 

implemented efficiently [20], [21], [22]. The goal of the study was to develop the best MLR prediction model of O3 

concentration in the industrial area using three different MLR methodologies. We developed three methods; (1) Method 

1 (MLR1) in which parameters that have a strong correlation with O3 concentration were used as input in MLR; (2) 

Method 2 (MLR2) in which principal component analysis (PCA) output was considered as input in MLR; (3) Method 3 

(MLR3) in which all meteorological factors and gaseous pollutants were used as inputs to develop MLR forecasting 

model. The best prediction model of O3 can help provide early information to local authorities for planning some 

mitigation strategies to decrease air pollution levels and improve air quality. 

 

2. Materials and Methods 

2.1 Study Area and Data Acquisition 

Kemaman is on the East Coast of Peninsular Malaysia, facing the South China Sea with a total area of 2,535.60 km2 

and the estimated total population is about 201,100 in 2014.  The Kemaman Municipal Council administers it, and the 

urban centre is located at Chukai [23]. It is also known as the second-largest city in Terengganu. The industrial areas in 

Terengganu consist of heavy industrial activities, such as the production of petrochemical, steel production, polymer, and 

manufacturing. The air quality monitoring station (AQMS) was installed by DOE Malaysia at Bukit Kuang, Teluk Kalong 

Primary School, Kemaman (N04o 16.260’: E103o 25.826’). It is near the city centre and industrial area with heavy traffic, 

especially during the peak hours (Fig1). Malaysian Department of Environment provided air pollutants and 

meteorological data from January 1, 2010 to December 31, 2014. The parameters including ozone (O3, ppm), nitrogen 

oxide (NO, ppm), nitrogen dioxide (NO2, ppm), carbon monoxide (CO, ppm), sulphur dioxide (SO2, ppm), wind speed 

(WS, km/hr), ambient temperature (T,0C), and relative humidity (RH, %). The data is tabulated and organised in 

Microsoft Excel Spreadsheet® 2016 before being analysed with Statistical Packages for the Social Sciences (SPSS®) 

Version 25. DOE Malaysia has entrusted Alam Sekitar Malaysia Sdn Bhd (ASMA) with the installation, operation, and 

maintenance of air pollution monitoring instruments and data [24].  

 DOE used Teledyne API Model 400/400E instrument through the ultraviolet (UV) absorption (Beer-Lambert) 

method with a 0.4 ppb detection limit and using the 0.5% of the precision level to measure the O3 concentration hourly 

[25]. Model 200A measured the continuous monitoring of NO2 and NO concentrations in the ambient air NO/NO2/NOx 

analyser by having chemiluminescence detection principles, as it provides sensible, stable, and easy usages [25]. The 

Teledyne API Model 100A/100E was used to measure SO2 concentration by the lowest detection at 0.04ppb using UV 

fluorescence. The Teledyne API Model 300/300E with 0.5% precision and 0.04 ppm of the most insufficient detection 

using non-dispersive and infrared absorption (Beer Lambert) used to monitor and measure CO concentrations [25]. The 

meteorological parameters, ambient temperature, relative humidity, and wind speed were measured by Met One 062, Met 

One 083D, and Met One 010C sensor, respectively [25]. 
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Fig. 1 - Location of Air Quality Monitoring Station (AQMS) at the Kemaman industrial area 
 

Daily calibration with zero air and standard gas concentrations is used for quality control and data assurance. 

Monitored data are checked before being transfer to DOE [26]. Due to calibration and technical problems, missing data 

were deleted to produce unbiased prediction and conservative results [27]. We did statistical descriptives analysis and 

percentile plot to investigate the trends of O3 concentration for five years—Normalizing data set by min-max techniques, 

ranging from 0 to 1. The normalization process was able to reduce biases in the analysis, as the parameters in the data set 

consisted of different types of International System of Units (SI) [24], [28]. Equation 1 shows the min-max normalization 

technique. 

 

𝑧𝑖 = 
𝑥1−min(𝑥)

max(𝑥)−min(𝑥)
 (1) 

 

where, 𝑥 = (𝑥1 … , 𝑥𝑛) and 𝑧𝑖 is a normalized data.  

 

2.2 Model Development and Validation 

PCA is a statistical method to determine and classify variables based on their correlation coefficient in principal 

components (PCs). 70 per cent of the data set in this study uses as input in PCA, in which the PCA divided and grouped 

into PCs, which will operate as input in regression analysis [29]. Varimax rotation applies to specify the PCs based on 

greater than 1 values of the eigenvalues. The Kaiser-Meyer-Olkin (KMO) test is essential in this analysis because it 

measures sampling adequacy with p > 0.50. In contrast, Bartlett’s test of sphericity uses to test factor analysis 

appropriation between correlation and variables with p < 0.001 [30], [31]. The advantage of this analysis is that it can 

reduce multicollinearity problem and ensure that a maximal variance of linear combination is chosen [29]. Equation 2 

shows the equation for PCA [30]. 

 

𝑃𝐶𝑖𝑗 = 𝑙1𝑖𝑋1𝑗 + 𝑙2𝑖 𝑋2𝑗+. . . +𝑙𝑛𝑖𝑋𝑛𝑗 (2) 

 

Where 𝑃𝐶 is component score, 𝑙 is component loading, 𝑋 is the measured value of the variable, 𝑖 is the component 

number, 𝑗 is the sample number, and 𝑛 is the total number of variables.  

 

MLR is an established model that may connect two or more independent variables to one dependent variable. The 

stepwise MLR models in this analysis were developed using a 95 percent confidence interval. Dataset divided in respect 

of 7:3 ratio for model development and data validation [32]. The residuals assumed normally distribute by having zero 

mean, uncorrelated and constant variances [23]. The MLR equation shown in Equation 3. 

 

y = b0 + ∑i
n
=1bi Xi + ε (3) 

bi is the regression coefficient (𝑋𝑖 is independent variables), and ε is a stochastic error associated with the regression. 
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VIF measures the multicollinearity problem between the predictors (independent variables) in the regression model. VIF 

values are below ten show there is no multicollinearity problem between the independent variables [29]. The VIF equation 

presents in Equation 4. 

 

 

𝑉𝐼𝐹𝑖 = 
1

1−𝑅𝑖
2 (4) 

 

Where, 

𝑉𝐼𝐹𝑖 is the variance inflation factor with 𝑖𝑡ℎ predictors 

𝑅𝑖
2 is the determination in the regression of the 𝑖𝑡ℎ predictor on all other predictors 

 

D-W test used to detect the autocorrelation in residuals from regression analysis. It could predict the O3 in the following 

hours or next days based on the O3 concentration in the current day. The test range values are between 0 to 4, showing 

no first-order autocorrelation as the residuals are uncorrelated for an evaluated value of 2 [29]. The equation of DW was 

present in Equation 5. 

 

𝐷𝑊 = 
∑ (𝑒𝑖−𝑒𝑖−1)2𝑛

𝑖=1

∑ 𝑒𝑖
2𝑛

𝑖=1

 (5) 

 

Where, 

 𝑛 = observations number 

 𝑒𝑖 =  𝑦 −  𝑦𝑖  (𝑦 = observed values and 𝑦𝑖  is the predicted values). 

 

R2 is used to establish if the data provide sufficient evidence to represent the entire model that contains information about 

the O3 concentration prediction model or vice versa. It also had been used as an indicator to select the best-fitted prediction 

models [29]. The R2 equation illustrated in Equation 6. 

 

𝑅2 = (
∑ (𝑃𝑖 − �̅�)(𝑂𝑖 − �̅�)𝑛

𝑖=1

𝑛. 𝑆𝑝𝑟𝑒𝑑 .𝑆𝑜𝑏𝑠

)2 (6) 

Where, 𝑛 = total number of measurements at a particular site, 𝑃𝑖  = predicted values, 𝑂𝑖  = observed values, �̅� = mean of 

predicted values, �̅�= mean of observed values, 𝑆𝑝𝑟𝑒𝑑  = standard deviation of predicted values, and 𝑆𝑜𝑏𝑠  = standard 

deviation of the observed values. 

 

The best-fit model is determined by the model's performance indicator of error and accuracy measurements. The error 

measures consisted of root mean square error (RMSE) and mean absolute error (MAE), while the determination of 

coefficient, R2 used as an accuracy measure. The model that is having higher accuracy measure (the values are close to 

1) and lower error values (relative to 0) considered as the best prediction model of O3 concentration in the industrial area 

[24], [33]—the performance indicators displayed in Equation 7 to Equation 9. 

 

 

a) Root Mean Square Error 

 

𝑅𝑀𝑆𝐸 = (
1

𝑛
∑ [𝑃𝑖

𝑛

𝑖=1
− 𝑂𝑖 ]

2)
1/2

 

 

(7) 

b) Mean Absolute Error 

 

𝑀𝐴𝐸 =  
∑ |𝑂𝑖 − 𝑃𝑖 |

𝑛
𝑖=1

𝑛
 

 

(8) 

c) Correlation Coefficient 

𝑅2 = (
∑ (𝑃𝑖 −  �̅�)(𝑂𝑖 −  �̅�)𝑛

𝑖=1

𝑛. 𝑆𝑝𝑟𝑒𝑑 . 𝑆𝑜𝑏𝑠

)

2

 
(9) 

 

3. Results and Discussion 

The yearly trend in O3 concentrations during a five-year period of data from an industrial location on Peninsular 

Malaysia's east coast has changed throughout the years [34]. Fig2 illustrates the fluctuated trends of O3 concentration 
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according to the percentiles 0%, 25%, 50%, 75%, and 100%. The highest maximum O3 concentration recorded in 2013 

with 0.098 ppm, and the lowest minimum O3 concentration of 0.000 ppm recorded in 2010, 2011, and 2014. The highest 

mean value of O3 concentration was 0.023 ppm (0.001 – 0.083 ppm), which was recorded in 2012, while the lowest mean 

value of O3 concentration was 0.018 ppm (0.000–0.081 ppm) in 2010—the summary of five-year O3 descriptive data 

displayed in Table 1. Therefore, the O3 concentration in the industrial areas at Terengganu was still within the NMAAQS 

limit, which was 0.18 ppm for one-hour exposure, while 0.100 ppm for 8-hour exposure [6]. However, other industrial 

areas in Malaysia, such as Shah Alam, recorded a maximum O3 concentration of about 0.174 ppm during the daytime, 

0.089 ppm during night-time, and 0.113 ppm during critical conversion time [33]. The highest maximum O3 concentration 

with values 0.124 ppm, 0.105 ppm, and 0.091 ppm recorded at Klang, Perai, and Pasir Gudang industrial areas, 

respectively, based on the 2009 data [25]. The reaction of O3 precursor with sunlight in the daytime promotes 

photochemical occurrence, which is an essential factor in increasing O3 concentration in the ambient air [10]. The O3 

precursor consists of nitrogen oxide, and VOCs emitted from industrial activities and motor vehicles [10], [35]. The 

presence of oxidant radicals (hydroperoxyl radicals, HO2), organic peroxy radicals (RO2), hydrocarbon and alkoxy 

radicals (RO) increase O3 production by converting NO to NO2 [19]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 - Annual trend of ozone (O3) concentration from the year 2010 to 2014 
 

Table 1 - Summary of descriptive analysis of O3 concentration from the year 2010 to 2014 

 

Spearman correlation connects the relationship between O3, meteorological factors and O3 precursors. Table 2 

tabulated the correlation analysis. With coefficient values of r = 0.788, p < 0.01, and r = 0.702, p < 0.01, respectively, 

WS and T displayed a substantial positive relationship with O3 concentration. The concentration of O3 in the atmosphere 

displayed a significant negative correlation with RH. Other gaseous pollutants including NO (r = 0.788, p 0.01), SO2 (r 

= 0.702, p < 0.01), NO2 (r = 0.215, p < 0.01), and CO (r = 0.123, p < 0.01) displayed a weak positive relationship with 

the rise in O3 concentration in Terengganu's industrial area. The mixed findings on correlational relationship of the 

bivariate parameters are slightly due to the different site characteristics, terrain, emission factors, and other related factors 

that influence the dispersion and fate of air pollutants in the atmosphere. The meteorological factors such as WS, T, and 

RH played huge roles in influencing the O3 concentration in certain areas. The increase of WS helped in increasing the 

dispersion of O3 and its precursor in the atmosphere by reducing the stability of the boundary layer and then transporting 

it from the surface layer to the upper layer [35], [36], [37]. The higher ambient temperature, T, and lower RH, which 

provided warm and dry conditions, promoted and speeded up the photochemical reaction and oxidation rates between O3 

itself and its precursor to produce a high O3 concentration in the ambient air [35], [38]. Human activities emit the other 

gaseous pollutant parameters, such as open burning, emissions from industries, and motor vehicle emissions. SO2 and 

CO usually produced from industrial emission and signified as the industrial emissions indicators that contribute to the 

Descriptive Statistics 
2010 

(N=5847) 

2011 

(N=4481) 

2012 

(N=5133) 

2013 

(N=5492) 

2014 

(N=3232) 

Mean (ppm) 0.018 0.022 0.023 0.021 0.022 

Median (ppm) 0.016 0.020 0.020 0.017 0.022 

Maximum (ppm) 0.081 0.095 0.083 0.098 0.079 

Minimum (ppm) 0.000 0.000 0.001 0.001 0.000 

 Std Dev (ppm) 0.013 0.015 0.015 0.015 0.137 
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O3 formation [35]. NOx commonly generated through anthropogenic activities in which converted to NO and NO2 through 

a chemical reaction which plays the main role in O3 formation in the atmosphere [36], [38].  

 

Table 2 - Summary of spearman bivariate correlation between O3 concentration with meteorological factor 

and other gaseous pollutants 

 O3 WS T RH NO SO2 NO2 CO 

O3 1 0.788** 0.702** -0.523** 0.141** 0.344** 0.215** 0.123** 

WS  1 0.649** -0.542** 0.266** 0.273** 0.084** -0.006 

T   1 -0.559** 0.242** 0.385** 0.245** 0.011 

RH    1 -0.179** -0.254** -0.099** 0.173** 

NO     1 0.241** 0.329** 0.278** 

SO2      1 0.324** 0.148** 

NO2       1 0.403** 

CO        1 

Note: ** Correlation is significant at the 0.01 level (2-tailed) 

 

KMO and Bartlett’s test of sphericity is important in PCA to determine the adequacy and appropriate factor analysis 

of the data in this study. Table 3 displays the result of KMO and Bartlett’s test of this study in which the KMO value is 

0.729 greater than 0.05, while Bartlett’s test value is 0.000 lower than 0.001. Therefore, this study is proven to have 

adequate data. It fulfilled the appropriate factor analysis as the requirement for PCA in which the KMO value was greater 

than 0.05, and Bartlett’s test value was lower than 0.001 [29].  

 

Table 3 - KMO and Bartlett’s Test 

Kaiser-Mayer-Olkin Measure of Sampling Adequacy 0.729 

Bartlett’s Test of Sphericity Approx. Chi-Square 51357.564 

df 28 

Sig. 0.000 

 

Table 4 lists the eigenvalues for each linear component (factor), as well as the values before, after, and after rotation. 

Before initiating the extraction process, eight parameters were chosen. Following the extraction, two components were 

chosen as PCs: those with higher eigenvalues than one and those with less eigenvalues than one [29]. The eigenvalues 

used to measure the amount of each component variance (percentage). These two factors accounted for 62% of the 

percentage reliability. The selected eigenvalues again displayed in the extraction sums of squared loadings and rotation 

sums of squared loadings. The rotation optimised the structure of the factor, which equalizing the two factors. The 

percentage of the variance before extraction showed that Factor 1 (38.59%) was higher than Factor 2 (23.11%), and it 

still had the same value after the extraction. However, some changes in the percentage of variance after the rotation in 

Factor 1 and Factor 2, with 38.13% and 23.84%, respectively. Table 5 shows the results using the varimax rotation with 

Kaizer normalisation. The matrix explained the parameters in each PC. With values less than 0.5, the output was 

suppressed by having either a positive or negative sign. Principal Component 1 (PC-1) can be concluded as a 

meteorological factor because it consisted of wind speed, temperature, and relative humidity. The major pollutant in 

industrial areas came from industrial and motor vehicles emissions that emitted gaseous pollutants, such as NO, NO2, 

and CO. Therefore, gaseous pollutants are also known as O3 precursors indicated in Principal Component 2 (PC-2) [33], 

[35].   

 

Table 4 - Total variance explained 

 Initial Eigenvalues 
Extraction sums of squared 

loadings 

Rotation Sums of Squared 

Loadings 

Component Total 
% of 

Variance 

Cumulative 

% 
Total 

% of 

Variance 

Cumulative 

% 
Total 

% of 

Variance 

Cumulative 

% 

1 3.109 38.858 38.858 3.109 38.858 38.858 3.050 38.130 38.130 

2 1.849 23.107 61.965 1.849 23.107 61.965 1.907 23.835 61.965 

3 0.842 10.522 72.487       

4 0.742 9.280 81.767       

5 0.546 6.826 88.593       

6 0.401 5.017 93.610       

7 0.321 4.008 97.617       

8 0.191 2.383 100.000       
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Table 5 - Varimax rotated component matrix 
 

 

 

 

 

 

 

 

 

 

MLR models were established based on three different inputs. The first method (MLR1) used the output from strong 

correlation parameters with the O3 concentration, based on the Spearman correlation analysis. The second method 

(MLR2) used the input from generated PCs through PCA, whereby this method is also known as principal component 

regression (PCR). It is a combination model of PCA and MLR [20], [30]. Meanwhile, the third method (MLR3) used all 

the meteorological and other gaseous pollutant parameters as their input in the MLR model's development. Table 6 

summarized all the three different equations of the MLR models. 

 

Table 6 - Summary of three MLR Models for forecasting O3 concentration based on three different Inputs 

 

As a result, WS and T were the significant prediction variables factor to the O3 concentration increase in the industrial 

areas for MLR1. The prediction of O3, t+1 concentration increased to 0.434 units when the WS was raised by one unit and 

0.252 units increasing by one unit of T. For MLR2, the O3, t+1 increased to 0.120 and 0.020 units when one unit of PC-1 

and PC-2 was increased. PC-1 consisted of the meteorological parameters WS, T, RH, and O3, while PC-2 consisted of 

NO, NO2, and CO. The O3, T, NO, CO, WS, RH, and NO2 were significant predictor variables for MLR3. The O3, t+1 

increased to 0.792 units, 0.086 units, 0.234 units, 0.071 units, 0.021 units, and 0.015 units by one unit of O3, T, NO, CO, 

WS, and RH, respectively and decreased to 0.106 units for one unit of NO2. 

We found that, during the model development, the MLR3 had higher values of determination correlation, R2 (0.792) 

as compared to MLR1 (R2, 0.571) and MLR2 (R2, 0.646). The R2 value had influenced the normal distribution of residuals 

in which it was negatively skewed, as illustrated in Fig3. The VIF ranges for these three MLR1, MLR2, and MLR3 were 

1.766, 1.000, and 1.198–2.550, respectively. Each model showed that they do not have a multicollinearity problem 

between the independent variables because the VIFs values were below 10. However, MLR2 had the lowest VIF value 

compared to MLR1 and MLR3, as it was a hybrid model PCA and MLR in which PCR minimised the multicollinearity 

problem among the independent variables [29], [30]. These three models were also not having any first-order 

autocorrelation problem as the D-W values were within 2, which were 0.627 (MLR1), 0.749 (MLR2), and 1.436 (MLR3) 

[29]. The fitted values against the prediction of the O3, t+1 model’s residual for the three models are plotted in Fig4 to 

show the uncorrelated residuals as the data around the horizontal band with the constant variance. \ 

The meteorological factors such as WS, T, and RH played a crucial component in forming, transportation, dispersion, 

and dilution of O3 in the ambient air. The high concentration of O3 was related to the presence of higher ambient 

temperature and lower relative humidity, which provided intense solar radiation and dry condition due to less amount of 

rainfall that caused the photochemical to happen frequently [36], [39]. A high wind speed can affect either O3 

concentration itself or other gaseous pollutants, its precursors by travelling a hundred miles from the original emission 

source and then forming and increasing the O3 in other areas, especially downwind areas. A low wind speed tends to 

allow chemical reactions to happen, making air pollution more concentrated [11], [35]. NOx commonly emitted through 

the combustion of fossil fuel and exhaust fumes. The reactive oxygen-containing molecules (RO2) during photolysis and 

oxidation reaction in converting NO2 to NO and oxygen atom help in the formation of O3 with sunlight [36]. Additionally, 

CO gases are one of the air pollutants emitted through the emission of motor vehicles and industry. The present 

 Component  

 1 2 

WS 0.863  

T 0.866  

RH -0.781  

O3 0.863  

NO  0.691 

NO2  0.811 

CO  0.801 

Method Model Remarks 

1 O3, t+1 = 0.030 + 0.434 (WS) + 0.252 (T) - 

2 O3, t+1 = 0.218 + 0.120 (PC-1) + 0.020 (PC-2) 

PC-1 = 0.863 (WS) + 0.866 (T) – 0.781 

(RH) + 0.863 (O3) 

 

PC-2 = 0.691 (NO) + 0.811 (NO2) + 0.801 

(CO) 

 

3 

O3, t+1 = 0.792 (O3) + 0.086 (T) + 0.234 (NO) + 

0.071 (CO) + 0.021 (WS) + 0.015 (RH) 

– 0.106 (NO2) – 0.015 

- 
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hydroperoxyl radical (HO2) during the oxidation reaction of CO also helps in contributing to the formation of O3 in the 

atmosphere [40], [41].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 - Standardized residual analysis of O3, t+1 in all the three method 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 - Testing assumption of variance and uncorrelated with mean equal to zero 

 

Thirty per cent of the dataset used to plot the prediction of O3, t+1 concentration against the observed O3 concentration 

for the three different models to determine a best-fitted model for the industrial area in Terengganu, as shown in Fig5. 

MLR1 had a correlation coefficient, R2 values of 0.592, which was the highest compared to MLR2 (0.439) and MLR3 

(0.262). Most of the points in each developed model were accumulated within a 95% confidence interval line, while the 

A and C lines were drawn as the upper and lower 95% confidence threshold for the MLR models. 

In this study, the calculation of performance indicators is via error and accuracy measures. Error measure consisted 

of RMSE and MAE, while the accuracy measure consisted of R2. Table 7 tabulated summary of the performance 

indicator. As a result, it showed that MLR2 had two performance indicators, with the lowest value in the error measure 

of RMSE (3.977) and MAE (3.548) as compared to the values in MLR1 (RMSE, 9.015; MAE, 8.834) and MLR3 (RMSE, 
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6.806; MAE, 6.789), while the MLR1 had the highest accuracy measure of R2 (0.668) as compared to MLR2 (0.431) and 

MLR3 (0.359). Therefore, MLR2 was selected as the best prediction model as it had an error value closest to zero and an 

accuracy measure close to one [33]. Based on a similar study by Pawlak and Jarosławski [42] conducted in Poland's rural 

and urban areas, the developed MLR model to predict O3 concentration had managed to get the RMSE value of 16.3–

15.9, MAE value of 13.0–15.9. and R2 value of 13.0–15.9 for all models. The MLR models developed in two different 

urban areas in Hong Kong during four distinct seasons: summer, monsoon, post-monsoon, and winter. All the MLR 

models had RMSE, MAE, and R2 with the range of 30.3–14.5, 29.6–11.4 and 0.64–0.54, respectively [43]. Awang et al. 

[33] established MLR and PCR models during the daytime, nighttime, and critical conversion time in the urban areas for 

forecasting the O3 concentration. They found the best-fitted models selected based on two performance indicators: the 

model with the lowest RMSE value (20.28–7.01) and the highest R2 value (0.74–0.23). The summary of a prediction 

model based on similar studies outcomes displayed in Table 8. 

 

Table 7 - Summary of performance indicator 

MLR Model RMSE MAE R2 

1 9.015 8.834 0.668 

2 3.977 3.548 0.431 

3 6.806 6.789 0.359 

 

Table 8 - The comparison of performance indicators in developing the O3 concentration prediction models 

based on similar studies 

Source Country Pollutant Model RMSE MAE R2 

Pawlak & 

Jarosławski, 

2019 [42] 

Poland O3 MLR 16.3-15.9 13.0-15.9 13.0-15.9 

Zhang & Ding, 

2017[43] 

 

Hong Kong O3 MLR 30.3-14.5 29.6-11.4 0.64-0.54 

Awang et al., 

2015 [22] 

Malaysia O3 MLR 

PCR 

20.28-7.01 - 0.74-0.23 

 

  

 

Fig 5 - Scatter plot of predicted O3 concentration (ppm) against observed O3 concentration (ppm) 
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4. Conclusion 

The five-year data of O3 concentration in the industrial area of Terengganu showed fluctuated trends from 2010 to 

2014. WS and T exhibited a high positive association with the rise in O3 concentration in the atmosphere, but RH had a 

high negative association with the rise in O3 concentration. MLR2 was chosen as the best-fitted prediction model for O3 

concentration based on its performance indicator since it had the lowest RMSE (3.977) and MAE (3.548) and a high R2 

(0.431). 
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