40 research outputs found
Recommended from our members
The natural history of immune responses to malaria
Available evidence suggests that responses to the parasite-induced antigens on the surface of red cells infected by mature stages of P. falciparum (PIESA) confer variant-specific immunity against malaria. However, much of the available data are derived from cross-sectional or longitudinal studies restricted to a few weeks after a malaria episode. As such, the natural history of antibody responses to PIESA is poorly documented. I set up a longitudinal framework to examine the kinetics, dynamics, and protective efficacy of anti-PIESA responses in children in Kilifi. I also used the same the framework to explore responses to other schizont antigens. The majority of children mounted typical primary antibody responses against PIESA within two weeks of an acute episode and sustained the levels for more than 12 weeks. However, some children appear to have inadequate responses that failed to persist beyond twelve weeks. When followed up over a year period, all the children showed loss and acquisition of anti-PIESA specificities regardless of their disease experience during the period. This suggests that anti-PIESA response may be short-lived and this might be related to the predomination of the responses by short-half life IgG3 or with failure to switch from IgM to IgG. Anti-PIESA antibody responses to certain randomly selected parasite isolates were associated with protection from subsequent clinical episodes either independently or in synergy with concurrent malaria infection. However, this protection was not related to the relative frequency with which the target isolates appear to have been encountered by the children during the follow-up period. Besides anti-PIESA responses, possession of antibodies to a 192 kDa schizont antigen band on a Western blot was also associated with protection against clinical episodes of malaria. IgGl and IgG3 dominated responses to all the bands on the blot and for some antigens; IgG3 responses were present only in pooled plasma from immune but not non-immune individuals. More studies are necessary in order to understand further the kinetics and dynamics of antibody responses to PIESA and other schizont antigens and the mechanisms underlying the protection against malaria that they provide
Effect of HIV infection on the acute antibody response to malaria antigens in children: an observational study
<p>Abstract</p> <p>Background</p> <p>In sub-Saharan Africa, the distributions of malaria and HIV widely overlap. Among pregnant and non-pregnant adults, HIV affects susceptibility to malaria, its clinical course and impairs antibody responses to malaria antigens. However, the relationship between the two diseases in childhood, when most deaths from malaria occur, is less clear. It was previously reported that HIV is associated with admission to hospital in rural Kenya with severe malaria among children, except in infancy. HIV-infected children with severe malaria were older, had higher parasite density and increased mortality, raising a hypothesis that HIV interferes with naturally acquired immunity to malaria, hence with little effect at younger ages (a shorter history of exposure). To test this hypothesis, levels of anti-merozoite and schizont extract antibodies were compared between HIV-infected and uninfected children who participated in the original study.</p> <p>Methods</p> <p>IgG responses to malaria antigens that are potential targets for immunity to malaria (AMA1, MSP2, MSP3 and schizont extract) were compared between 115 HIV-infected and 115 age-matched, HIV-uninfected children who presented with severe malaria. The children were classified as high and low responders for each antigen and assigned antibody-response breadth scores according to the number of antigens to which they were responsive. A predictive logistic regression model was used to test if HIV was an effect modifier on the age-related acquisition of antibody responses, with age as a continuous variable.</p> <p>Results</p> <p>Point estimates of the responses to all antigens were lower amongst HIV-infected children, but this was only statistically significant for AMA1 (P = 0.028). HIV-infected children were less likely to be high responders to AMA1 [OR 0.44 (95%CI, 0.2-0.90) P = 0.024]. HIV was associated with a reduced breadth of responses to individual merozoite antigens (P = 0.02). HIV strongly modified the acquisition of antibodies against schizont extract with increasing age (P < 0.0001), but did not modify the rate of age-related acquisition of responses to individual merozoite antigens.</p> <p>Conclusions</p> <p>In children with severe malaria, HIV infection is associated with a lower magnitude and narrower breadth of IgG responses to merozoite antigens and stunting of age-related acquisition of the IgG antibody response to schizont extract.</p
A scoping review of ethics review processes during public health emergencies in Africa
Background: The COVID-19 pandemic forced governments, multilateral public health organisations and research institutions to undertake research quickly to inform their responses to the pandemic. Most COVID-19-related studies required swift approval, creating ethical and practical challenges for regulatory authorities and researchers. In this paper, we examine the landscape of ethics review processes in Africa during public health emergencies (PHEs).
Methods: We searched four electronic databases (Web of Science, PUBMED, MEDLINE Complete, and CINAHL) to identify articles describing ethics review processes during public health emergencies and/or pandemics. We selected and reviewed those articles that were focused on Africa. We charted the data from the retrieved articles including the authors and year of publication, title, country and disease(s) reference, broad areas of (ethical) consideration, paper type, and approach.
Results: Of an initial 4536 records retrieved, we screened the titles and abstracts of 1491 articles, and identified 72 articles for full review. Nine articles were selected for inclusion. Of these nine articles, five referenced West African countries including Liberia, Guinea and Sierra Leone, and experiences linked to the Ebola virus disease. Two articles focused on South Africa and Kenya, while the other two articles discussed more general experiences and pitfalls of ethics review during PHEs in Africa more broadly. We found no articles published on ethics review processes in Africa before the 2014 Ebola outbreak, and only a few before the COVID-19 outbreak. Although guidelines on protocol review and approval processes for PHEs were more frequently discussed after the 2014 Ebola outbreak, these did not focus on Africa specifically.
Conclusions: There is a gap in the literature about ethics review processes and preparedness within Africa during PHEs. This paper underscores the importance of these processes to inform practices that facilitate timely, context-relevant research that adequately recognises and reinforces human dignity within the quest to advance scientific knowledge about diseases. This is important to improve fast responses to PHEs, reduce mortality and morbidity, and enhance the quality of care before, during, and after pandemics
How to improve research capacity strengthening efforts: learning from the monitoring and evaluation of four research consortia in Africa
Recent efforts to shift the control and leadership of health research on African issues to Africa have led to increased investments for scientific research capacity strengthening (RCS) on the continent and a greater demand for accountability, value for money and demonstration of return on investment. There is limited literature on monitoring and evaluation (M&E) of RCS systems and there is a clear need to further explore whether the M&E frameworks and approaches that are currently used are fit for purpose. The M&E approaches taken by four African RCS consortia funded under the Developing Excellence in Leadership, Training and Science in Africa (DELTAS) I initiative were assessed using several methods, including a framework comparison of the M&E approaches, semi-structured interviews and facilitated discussion sessions. The findings revealed a wide range in the number of indicators used in the M&E plans of individual consortium, which were uniformly quantitative and at the output and outcome levels. Consortia revealed that additional information could have been captured to better evaluate the success of activities and measure the ripple effects of their efforts. While it is beneficial for RCS consortia to develop and implement their own M&E plans, this could be strengthened by routine engagement with funders/programme managers to further align efforts. It is also important for M&E plans to consider qualitative data capture for assessment of RCS efforts. Efforts could be further enhanced by supporting platforms for cross-consortia sharing, particularly when trying to assess more complex effects. Consortia should make sure that processes for developmental evaluation, and capturing and using the associated learning, are in place. Sharing the learning associated with M&E of RCS efforts is vital to improve future efforts. Investing and improving this aspect of RCS will help ensure tracking of progress and impact of future efforts, and ensure accountability and the return on investment. The findings are also likely applicable well beyond health research
Breadth of antibodies to Plasmodium falciparum variant surface antigens is associated with immunity in a controlled human malaria infection study
Background: Plasmodium falciparum variant surface antigens (VSAs) contribute to malaria pathogenesis by mediating cytoadhesion of infected red blood cells to the microvasculature endothelium. In this study, we investigated the association between anti-VSA antibodies and clinical outcome in a controlled human malaria infection (CHMI) study.
Method: We used flow cytometry and ELISA to measure levels of IgG antibodies to VSAs of five heterologous and one homologous P. falciparum parasite isolates, and to two PfEMP1 DBLβ domains in blood samples collected a day before the challenge and 14 days after infection. We also measured the ability of an individual’s plasma to inhibit the interaction between PfEMP1 and ICAM1 using competition ELISA. We then assessed the association between the antibody levels, function, and CHMI defined clinical outcome during a 21-day follow-up period post infection using Cox proportional hazards regression.
Results: Antibody levels to the individual isolate VSAs, or to two ICAM1-binding DBLβ domains of PfEMP1, were not associated with a significantly reduced risk of developing parasitemia or of meeting treatment criteria after the challenge after adjusting for exposure. However, anti-VSA antibody breadth (i.e., cumulative response to all the isolates) was a significant predictor of reduced risk of requiring treatment [HR 0.23 (0.10-0.50) p= 0.0002].
Conclusion: The breadth of IgG antibodies to VSAs, but not to individual isolate VSAs, is associated with protection in CHMI
Evolution of a programme to engage school students with health research and science in Kenya [version 1; referees: 2 approved]
Facilitating mutually-beneficial educational activities between researchers and school students is an increasingly popular way for research institutes to engage with communities who host health research, but these activities have rarely been formally examined as a community or public engagement approach in health research. The KEMRI-Wellcome Trust Research Programme (KWTRP) in Kilifi, Kenya, through a Participatory Action Research (PAR) approach involving students, teachers, researchers and education stakeholders, has incorporated ‘school engagement’ as a key component into their community engagement (CE) strategy. School engagement activities at KWTRP aim at strengthening the ethical practice of the institution in two ways: through promoting an interest in science and research among school students as a form of benefit-sharing; and through creating forums for dialogue aimed at promoting mutual understanding between researchers and school students. In this article, we provide a background of CE in Kilifi and describe the diverse ways in which health researchers have engaged with communities and schools in different parts of the world. We then describe the way in which the KWTRP school engagement programme (SEP) was developed and scaled-up. We conclude with a discussion about the challenges, benefits and lessons learnt from the SEP implementation and scale-up in Kilifi, which can inform the establishment of SEPs in other settings
KILchip v1.0: A Novel Plasmodium falciparum Merozoite Protein Microarray to Facilitate Malaria Vaccine Candidate Prioritization
Passive transfer studies in humans clearly demonstrated the protective role of IgG antibodies against malaria. Identifying the precise parasite antigens that mediate immunity is essential for vaccine design, but has proved difficult. Completion of the Plasmodium falciparum genome revealed thousands of potential vaccine candidates, but a significant bottleneck remains in their validation and prioritization for further evaluation in clinical trials. Focusing initially on the Plasmodium falciparum merozoite proteome, we used peer-reviewed publications, multiple proteomic and bioinformatic approaches, to select and prioritize potential immune targets. We expressed 109 P. falciparum recombinant proteins, the majority of which were obtained using a mammalian expression system that has been shown to produce biologically functional extracellular proteins, and used them to create KILchip v1.0: a novel protein microarray to facilitate high-throughput multiplexed antibody detection from individual samples.The microarray assay was highly specific; antibodies against P. falciparum proteins were detected exclusively in sera from malaria-exposed but not malaria-naïve individuals. The intensity of antibody reactivity varied as expected from strong to weak across well-studied antigens such as AMA1 and RH5 (Kruskal–Wallis H test for trend: p < 0.0001). The inter-assay and intra-assay variability was minimal, with reproducible results obtained in re-assays using the same chip over a duration of 3 months. Antibodies quantified using the multiplexed format in KILchip v1.0 were highly correlated with those measured in the gold-standard monoplex ELISA [median (range) Spearman's R of 0.84 (0.65–0.95)]. KILchip v1.0 is a robust, scalable and adaptable protein microarray that has broad applicability to studies of naturally acquired immunity against malaria by providing a standardized tool for the detection of antibody correlates of protection. It will facilitate rapid high-throughput validation and prioritization of potential Plasmodium falciparum merozoite-stage antigens paving the way for urgently needed clinical trials for the next generation of malaria vaccines
How to improve research capacity strengthening efforts: learning from the monitoring and evaluation of four research consortia in Africa
Recent efforts to shift the control and leadership of health research on African issues to Africa have led to increased investments for scientific research capacity strengthening (RCS) on the continent, and a greater demand for accountability, value for money and demonstration of return on investment. There is limited literature on monitoring and evaluation (M&E) of RCS systems and there is a clear need to further explore whether the M&E frameworks and approaches that are currently used are fit for purpose. The M&E approaches taken by four African RCS consortia funded under the Developing Excellence in Leadership, Training and Science in Africa (DELTAS) I initiative were assessed using several methods including: a framework comparison of the M&E approaches; semi-structured interviews; and facilitated discussion sessions. The findings revealed a wide range in the number of indicators used in the M&E plans of individual consortia, which were uniformly quantitative and at the output and outcome level. Consortia revealed that additional information could have been captured to better evaluate the success of activities and measure the ripple effects of the efforts. While it is beneficial for RCS consortia to develop and implement their own M&E plans, this could be strengthened by routine engagement with funders/programme managers to further align efforts. It is also important for M&E plans to consider qualitative data capture for assessment of RCS efforts. Efforts could be further enhanced by supporting platforms for cross-consortia sharing, particularly when trying to assess more complex effects. Consortia should make sure that processes for developmental evaluation, and capturing and using the associated learning, are in place. Sharing the learning associated with M&E of RCS efforts is vital to improve future efforts. Investing and improving this aspect of RCS will help ensure tracking of progress and impact of future efforts, and ensure accountability and the return on investment. The findings are also likely applicable well beyond health research
IgG antibody responses to Plasmodium falciparum merozoite antigens in Kenyan children have a short half-life
BACKGROUND: Data suggest that antibody responses to malaria parasites merozoite antigens are generally short-lived and this has implications for serological studies and malaria vaccine designs. However, precise data on the kinetics of these responses is lacking. METHODS: IgG1 and IgG3 responses to five recombinant Plasmodium falciparum merozoite antigens (MSP-119, MSP-2 type A and B, AMA-1 ectodomain and EBA-175 region II) among Kenyan children were monitored using ELISA for 12 weeks after an acute episode of malaria and their half-lives estimated using an exponential decay model. RESULTS: The responses peaked mainly at week 1 and then decayed rapidly to very low levels within 6 weeks. Estimation of the half-lives of 40 IgG1 responses yielded a mean half-life of 9.8 days (95% CI: 7.6-12.0) while for 16 IgG3 responses it was 6.1 days (95% CI: 3.7-8.4), periods that are shorter than those normally described for the catabolic half-life of these antibody subclasses. CONCLUSION: This study indicates antibodies against merozoite antigens have very short half-lives and this has to be taken into account when designing serological studies and vaccines based on the antigens
Tracking the introduction and spread of SARS-CoV-2 in coastal Kenya
Genomic surveillance of SARS-CoV-2 is important for understanding both the evolution and the patterns of local and global transmission. Here, we generated 311 SARS-CoV-2 genomes from samples collected in coastal Kenya between 17th March and 31st July 2020. We estimated multiple independent SARS-CoV-2 introductions into the region were primarily of European origin, although introductions could have come through neighbouring countries. Lineage B.1 accounted for 74% of sequenced cases. Lineages A, B and B.4 were detected in screened individuals at the Kenya-Tanzania border or returning travellers. Though multiple lineages were introduced into coastal Kenya following the initial confirmed case, none showed extensive local expansion other than lineage B.1. International points of entry were important conduits of SARS-CoV-2 importations into coastal Kenya and early public health responses prevented established transmission of some lineages. Undetected introductions through points of entry including imports from elsewhere in the country gave rise to the local epidemic at the Kenyan coast