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ABSTRACT

Available evidence suggests that responses to the parasite-induced antigens on the surface of red cells 
infected by mature stages of P. falciparum (PIESA) confer variant-specific immunity against malaria. 
However, much of the available data are derived from cross-sectional or longitudinal studies restricted to 
a few weeks after a malaria episode. As such, the natural history of antibody responses to PIESA is poorly 
documented. I set up a longitudinal framework to examine the kinetics, dynamics, and protective efficacy 
of anti-PIESA responses in children in Kilifi. I also used the same the framework to explore responses to 
other schizont antigens.

The majority of children mounted typical primary antibody responses against PIESA within two weeks of 
an acute episode and sustained the levels for more than 12 weeks. However, some children appear to have 
inadequate responses that failed to persist beyond twelve weeks. When followed up over a year period, all 
the children showed loss and acquisition of anti-PIESA specificities regardless of their disease experience 
during the period. This suggests that anti-PIESA response may be short-lived and this might be related to 
the predomination of the responses by short-half life IgG3 or with failure to switch from IgM to IgG.

Anti-PIESA antibody responses to certain randomly selected parasite isolates were associated with 
protection from subsequent clinical episodes either independently or in synergy with concurrent malaria 
infection. However, this protection was not related to the relative frequency with which the target isolates 
appear to have been encountered by the children during the follow-up period.

Besides anti-PIESA responses, possession of antibodies to a 192 kDa schizont antigen band on a Western 
blot was also associated with protection against clinical episodes of malaria. IgGl and IgG3 dominated 
responses to all the bands on the blot and for some antigens; IgG3 responses were present only in pooled 

plasma from immune but not non-immune individuals.

More studies are necessary in order to understand further the kinetics and dynamics of antibody responses 
to PIESA and other schizont antigens and the mechanisms underlying the protection against malaria that 

they provide.
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CHAPTER 1 

INTRODUCTION

1.1 MALARIA -  THE CURRENT OUTLOOK

It has been about 100 years since the discovery of malaria parasites by Alphonse Le varan and 

the demonstration of the role of mosquitoes in the transmission of malaria by Ronald Ross. 

These events along with the contribution of other early malariologists such as Grassi, 

Bignami, and Bastianelli facilitated the understanding of the life cycle of malaria parasites 

and ushered in a period of intense optimism on the possibility of completely eradicating 

malaria. Unfortunately, a century later, malaria remains one of the leading causes of 

morbidity and mortality in the world. It is estimated that over 400 million people are infected 

by malaria parasites each year resulting in about 1 million deaths, the majority of which occur 

among children in the tropical regions (WHO, 1996). In spite of increased knowledge of the 

parasite’s biology and the availability of advanced technology for malaria research, there has 

been little success in eradicating malaria. Indeed, the hopes of complete eradication have 

given way to a more pragmatic goal of controlling malaria disease.

Many factors have collaborated in frustrating efforts to eradicate malaria. Although vector 

control programmes such as DDT residual spraying proved successful in eliminating malaria 

in temperate regions where transmission was initially low, they have failed to make much 

headway in the tropical regions. The vector systems in these regions are extremely efficient 

and robust and meaningful reduction in transmission can only be achieved through very 

intense and sustained efforts. Even slight relenting in control efforts results in transmission 

rapidly bouncing back to pre-control levels. Unfortunately, the majority of countries where 

malaria is endemic are unable to bear the cost of sustained control progranunes.
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Consequently, many, of the programmes have collapsed leading to the re-emergence of 

malaria where some control had previously been achieved. In addition, the emergence of 

insecticide-resistant mosquitoes, coupled with the need to limit insecticide use due to their 

adverse effects on the environment, have also been important factors in the failure to control 

malaria. Currently, vector control is focused on the use of insecticide treated bed-nets 

(ITBN). Although ITBN have proved efficacious in reducing severe malaria morbidity and 

mortality among children, there are concerns over their sustainability and long-term effects 

on the development of malaria immunity.

Chemotherapy is the mainstay of malaria control, but it is being severely undermined by the 

rapid emergence and spread of parasite resistance to the currently available drugs. There is 

now widespread resistance to chloroquine in many malaria-endemic areas and in the absence 

of equally cheap alternatives, a rise in malaria morbidity and mortality is expected. Whereas a 

vaccine might provide the best alternative to drugs, the search for a malaria vaccine has 

proved to be even more frustrating. It is now clear that immunity to malaria parasites is much 

more complex than immunity to many bacteria and viruses against which highly effective 

vaccines been developed. Malaria parasites employ a diverse array of counter-measures 

against the host immune system and even where immunity is achieved, it is incomplete. 

Unfortunately, the market for anti-malarial drugs and vaccines is very impoverished and as 

such there is little impetus for the pharmaceutical companies to invest in the development of 

such drugs and vaccines. To date, despite the death toll from malaria, the amount of money 

that has been committed to malaria drugs and vaccine development is paltry compared that 

invested in cancer or HIV drugs.



Besides the inability to sustain control programmes or afford alternatives to chloroquine, 

many of the countries that bear the burden of malaria are plagued with many social-political 

problems that further hinder attempts to control malaria. Even where anti-malarial drugs are 

available by subsidy, overstretched supply lines, logistic problems, and social-political 

upheavals with the associated population dislocation are major handicaps. At the same time, 

changes in global climate and ecologies due to natural and human activities are redefining 

the seasonality and geographic extent of malaria transmission making control activities 

difficult to plan.

Finally, the emergence of the HIV epidemic in malaria endemic areas poses a particularly 

difficult challenge. Although the direct effects of HIV infection on malaria associated 

morbidity and mortality are not clearly established, by placing an unprecedented demand 

on the already meagre health resources, HIV is bound to have a major negative impact on 

malaria control.

However, not all news from the malaria war front is negative. The publishing of the 

completed P. falciparum chromosome 2 and 3 nucleotide sequences in 1998 and 1999 

respectively was something of a boost to the dwindling optimism in malaria research. 

Another 8 out the 12 remaining chromosomes are already in the closure phase and could be 

published in the near future. Availability of all this genetic information is opening up new 

possibilities and approaches in all aspect of malaria research ranging from basic parasite 

biology to drugs and vaccine development. Besides having much promise in terms of 

valuable data, the Malaria Genome project is also good lesson for malaria research; an 

example of how much more quickly results can be achieved when different teams work in 

concert towards a common goal.



After a period of neglect, malaria control has begun finding its way back into the priority lists 

of major funding organisations. This follows a realisation that only through more concerted 

efforts and radically more funding than has been available hitherto can any hope of curbing 

malaria be realised. This renewed campaign against malaria was spearheaded by initiation of 

the Roll Back Malaria campaign by the WHO in 1998 with an aim of cutting malaria deaths 

by half by the year 2010 and has resulted in pledges of increased funding by many donor 

agencies. The G-8 group of nations have promised billions of dollars to fight malaria, AIDS 

and TB while the World Bank is pledging over $300 million interest-free loans to fight 

diseases especially in Africa. New players such as the Bill and Melinda Gates foundation, 

which has donated over $100 million for malaria research, have recently joined the field.

At the same time, several international alliances of organisations have been formed with an 

aim of maximising the impact of malaria research. The Multilateral Initiative on Malaria 

(MIM) is one such alliance. MEM emerged following a number of consultative meetings 

between African scientists and key players in malaria research from developed countries. Its 

overarching goal was thus defined at a meeting in 1997 in Dakar; ‘To strengthen and 

sustain through collaborative research and training, the capability o f malaria endemic 

countries in Africa to carry out research required to develop and improve tools fo r  malaria”. 

Though not a funding body itself, MIM has played a significant role in drawing additional 

funds for malaria research into Africa and has given the impetus for the formation of several 

other multi-centred malaria research initiatives and networks: the Severe Malaria in African 

Children network (SMAC); the Mapping Malaria Risk in Africa (MARA) project and the 

African Malaria Vaccine testing Network (AMVTN) to mention a few! It is hoped that this 

renewed campaign will achieve tangible progress against malaria before donor fatigue sets in 

again.



1.2 PARASITE AND VECTOR (Fig 1.1)

Malaria is caused by protozoan parasites of the Plasmodium genus. Of the nearly 200 species 

in this genus, four: P. ovale; P. malariae; P. vivax and P. falciparum are infectious to 

man under natural conditions. The last species is responsible for much malaria morbidity and 

practically all the mortality. The genus Plasmodia belongs to the apicomplexa, a large 

phylum of parasitic protozoa that are characterized by the possession of an apical complex 

organelle that lends the phylum its name. The phytogeny of human malaria parasites remains 

controversial, although there is a general consensus that the four species evolved separately 

and became parasitic on humans at different times in history. It has been suggested that the 

malignancy associated with P. falciparum infections might reflect a relatively recent cross 

over by this species into humans. However, phylogenetic studies on the parasite’s ribosomal 

RNA suggest that P. falciparum diverged from it’s closest relative, the apes parasite P. 

reichenowi, about 11 million years ago which is about the same time that man and apes are 

thought to have diverged (Ayala, et a l, 1999). Thus P. falciparum may have been infecting 

humans since the beginning of hominid evolution.

Human malaria parasites are transmitted by female mosquitoes of the anopheles genus. This 

genus consists of a large number of species that differ in their capacity to transmit malaria 

depending on their biology and feeding habits. The spatial-temporal distribution of these 

vectors together with climatic factors that influence parasite development in the vector 

delineate the extent of malaria transmission. The Anopheles gamble complex with it’s six 

sibling species and A. funestus, all found in Africa, form the most efficient malaria vector 

system and have greatly contributed to the difficulty of controlling malaria in this continent.



The life cycle of malaria parasites

Members of the genus plasmodia exhibit two phases during their life cycle. Within the 

definitive host they exist as haploid forms while fertilization takes place in the vector to 

produce a diploid zygote, which then undergoes cell division to give rise to haploid forms 

that can re-infect the definitive host. The vector phase in human malaria begins when a 

female anopheline mosquito picks up mature malaria gametocytes along with its blood meal. 

Once in the mosquito guts, the male gametocyte release about eight motile male gametes 

through a process know as exflagellation. If the male gametes find a female gametocyte 

fertilization takes place giving rise to a zygote. The zygote develops into a motile ookinete 

that penetrates through the mosquito gut lining into the haemocel and attach on the outer 

wall of the gut. A multiplicative process called sporogony begins giving rise to a large 

number of haploid motile sporozoites. These sporozoites find their way to the mosquito 

salivary gland and are injected into the human host when the mosquito seeks another blood 

meal. The whole mosquito phase takes about 15 days but is dependent on ambient 

temperature and humidity, being longer when temperatures are low.

Once inside the human body, the sporozoites finds their way into the liver cells (hepatocytes) 

where pre-erythrocytic schizogony takes place and up to 30,000 daughter cells known as 

merozoites are formed. After about 7 days, the hepatocytes burst to release the merozoites 

into the blood stream. Merozoites invade red blood cells with the aid of the apical complex 

organelle and begin their erythrocytic stage. Initially parasites appear as a ring of cytoplasm 

surrounding a large vacuole with a small nucleus on the periphery. Within the next 24-36 

hours the rings grow and the vacuole decreases, then schizogony begins again. Between 8-32 

merozoites are produced in erythrocytic schizogony. After 48 hours in case of P. falciparum, 

the merozoites mature causing the hosting red cell to rupture. The merozoites re-invade new



red cells to begin another erythrocytic cycle. Not all ring trophozoites mature into schizonts, a 

small proportion undergo morphological changes and sexual differentiation to become male 

and female gametocytes. After about 8- 10 days the gametocytes mature and are ready to be 

taken up by a mosquito for the vector phase to begin.

1.3 EPIDEMIOLOGY OF MALARIA

In this section I will discuss the geographical distribution of malaria, the classification of 

endemicity, the malariometric parameters used and various methods used to obtain them. 

Then I will discuss the pattern of malaria infection and disease incidence in relation to age 

and transmission intensity and the implications for immunity to malaria.

Geographic distribution of maiaria

The baseline factors that determine the probability of malaria transmission in an area are the 

presence of climatic and ecological conditions appropriate for anopheline mosquitoes and the 

development of malaria sporozoites in the vector. At least 80mm of rainfall annually and an 

average temperature of over 18 for at least five contiguous months are necessary for 

malaria transmission (Snow, et a l, 1999). However, the limits set by climatic conditions may 

be modified by human activities such as agriculture, urbanization, mass population 

movement, and malaria control programmes.

Until the beginning of the 20̂  ̂century when effective methods of control were discovered, 

the global distribution of malaria was much more extensive than it is now. Malaria is 

reported to have been a serious scourge in Europe along the Mediterranean Sea and as far 

north as England and the steppes of Russia. Limited transmission also occurred in the 

southern part of the United States of America. Today, malaria transmission is largely



restricted to the tropical regions, with Africa bearing by far the largest burden of the disease. 

Outside Africa, malaria transmission occurs in the Amazon region in South America, Central 

America, the Pacific islands, the Indonesian peninsula and Papua New Guinea, South East 

Asia, the Indian subcontinent and the Middle East.

Climatic conditions that are suitable for malaria transmission exist over much of Africa 

except in the Sahara, Namib, and Kalahari deserts where water is absent, and in the East 

African highlands, and the Southern tip of Africa where altitude and latitude respectively 

allow the average temperature to fall below 18 ^C (Snow, et a l, 1999; Hay, et a l, 2000). On 

the other hand, even in areas with very low rainfall, malaria transmission occurs along rivers, 

and where there are irrigation schemes. There has been little success in eradicating malaria in 

Africa. Only in the central highlands of Madagascar has substantial and sustained reduction 

in transmission been achieved through fnass chemotherapy and residual spraying. The main 

vectors in Africa are the Anopheles gambiae complex, A. funestus, A. nili, and A. moucheti 

(Fontenille and Lochouam, 1999). Most of malaria in Africa is caused by P. falciparum, as 

a large proportion of the population possess duffy-negative red cells, which are resistant to 

invasion, by P. vivax (Miller, et a l, 1976; Miller, et a l, 1978). There is also widespread 

transmission of P. ovale and P. malariae but both cause limited clinical problems.
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Parameters used to measure malaria transmission

The intensity of malaria transmission in an area can be estimated by considering the 

proportion of the resident population that have malaria parasites or exhibit malaria-related 

signs such as a swollen spleen (prevalence) or the rate of new infections or disease cases 

(incidence). Alternatively, human-vector contact is estimated by determining the number of 

infected mosquito bites a person receives over a given time: entomological inoculation rate 

(EIR). From this parameter, the total number of secondary cases generated by a single case, 

i.e. the basic reproduction rate (Ro) can be estimated. Under normal circumstances Ro is 

never hilly achieved as many factors affect the generation of new cases, however it has many 

implications in terms of malaria transmission and vaccine development (Fig 1.2) (Molineux, 

1988; Wemsdorfer and McGregor, 1988).

The rapid rise with age of the number of individuals who have been exposed to malaria in 

endemic areas has been seen as an indication that malaria has very high Ro. The implication 

of this is that vaccines against malaria will need to have very high efficacy and effectiveness 

if they are to reduce malaria transmission. However, studies in Papua New Guinea (Forsyth, 

et a l, 1989), Kenya (Bull, et a l, 1998) and Gabon (Barragan, et a l,  1998) have shown that 

exposure to individual parasite variants, as reflected by rate of sero-conversion to the 

polymorphic antigens on the surface of red cells infected by mature stages of P. falciparum, 

actually rise relatively slowly with age. Such an age-exposure relationship suggests that 

individual variants of malaria parasites may have relatively low transmissibility. Thus, 

malaria could be seen as a construct o f many independently transmitted low-Ro variants. In 

which case, the apparently high Ro of malaria might simply reflect the sum of the Ro o f the 

constituent variants rather high transmissibility (Gupta, et a l, 1994).
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Mathematical modelling of malaria transmission

Ronald Ross (1911) was the first to formulate a mathematical model that attempts to 

quantify the relationship between malaria prevalence, vectorial capacity, recovery rate, and 

time. Ross’s model was subsequently modified by Macdonald (1952) who incorporated terms 

to test the sensitivity o f endemicity to changes in transmission variables (Najera, 1974). A 

third model that includes partial immunity was developed by Dietz during the Garki malaria 

control project (Dietz, et a l, 1974). A number of insights into the transmission of malaria that 

are important in the planning and evaluation of malaria control were derived fi*om these 

models. First, there is a critical vectorial capacity below which malaria transmission is not 

sustainable (Fig. 1.2 ). Second, close to this point small changes in vectorial capacity can 

produce disproportionately large changes in prevalence. This explains why low transmission 

areas are prone to epidemics. Third, at higher levels of transmission, even large fluctuations 

in vectorial capacity have little or no effect on parasite prevalence. The corollary of this is 

that a drastic reduction in prevalence without alteration of vectorial capacity is followed by a 

rebound to the original prevalence. These models predict that short of driving vectorial 

capacity to the critical point, malaria control measures are bound to fail. Although some of 

the predictions made by these models have been proved, some of their implicit and explicit 

assumptions may not hold in the field. A very robust model would be required to cope with 

all the perturbations seen in nature (reviews by (Molineaux, 1985; Dietz, 1988; McKenzie, 

2000).

The burden of malaria d isease in Africa

Assessing the true burden of malaria disease in Africa is hampered by lack of data. The 

majority of malaria deaths occur outside hospital where they are inaccessible for recording 

(Snow, et a l, 1999). Verbal autopsies used to estimate out-of-hospital mortality have low
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sensitivity and specificity (Snow, et a l, 1992; Quigley, et a l, 1996). Similarly, hospital 

records are often limited and of suspect reliability. Nevertheless, it is estimated that about 1 

million malaria-attributable childhood deaths occur in Africa annually (Greenwood, et a l, 

1991; WHO, 1996 ).

Figure 1.2
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A careful review by Snow et al (1999) of 28 prospective demographic surveillance from 12 

east and west African countries yielded a median malaria mortality of 8.6 deaths per 1000 in 

children aged 4 years or less. Although the case-fatality of malaria appears low compared to 

that of some other childhood diseases, the high incidence ensures that malaria is the leading 

cause of childhood deaths in endemic areas (Greenberg, et a l, 1989; Greenwood, et a l, 1991; 

Snow, et a l, 1998a). Combining these malaria-specific mortality estimates with fuzzy logic 

models that integrate high resolution population and climatic probability models with 

geographic information systems (GIS) to estimate malaria risk put malaria mortality among 

Africa children between 0 - 4  years at between 0.43 and 0.68 million per year (Snow, et a l, 

1996; Snow, et a l, 1998a; Snow, et a l, 1999).

The Relationship between transmission, age, and distribution of disease.

In areas of very low or unstable transmission, malaria morbidity and mortality are equally 

distributed among all age groups, unless if for some reason there is age-related variation in 

exposure. The amount of exposure to malaria parasites is not sufficient to allow the 

development of long-term malaria immunity. Nevertheless, a small group of people are able 

to maintain chronic asymptomatic infections, and those serve as a reservoir of infection 

(Babiker, et a l, 2000; Hamad, et a l, 2000). Under ordinary circumstances, the total burden 

of disease in these areas is low as the lifetime risk of disease is also low (Snow, et a l, 1997). 

However, such areas are vulnerable to malaria epidemics during which, mortality among all 

age groups can be extremely high if appropriate treatment is not available (Allés, et a l, 1998; 

Hay, et a l, 2001). Immigrants from non-endemic areas represent another group within which 

the risk of malaria disease is equally distributed among all age group. However, data from 

Irian Jay a suggest, albeit inconclusively, that older immigrants have higher initial risk of
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developing severe malaria than younger ones but go on to acquire immunity more rapidly 

(Baird, 1995; Andersen, e ta l,  1997; Reeder, et aL, 1997).

In areas where transmission is stable, malaria morbidity and mortality is concentrated in 

young children, becoming less frequent with age (Greenberg, et a l, 1989). Malaria mortality 

is virtually absent in adults (Fig. 1.3). This observation provides the strongest evidence that 

individuals develop malaria-specific immunity following repeated exposure. Infants below 

the age of three months are normally relatively protected from malaria by a number of 

mechanisms including maternal antibodies, foetal haemoglobin that is thought to be less 

conducive to parasite growth, and reduced contact with mosquitoes (Sehgal, et a l, 1989; 

Hogh, et a l, 1995; Snow, et a l, 1998b). This protection wanes by the fourth to sixth month 

of life and disease incidence increases rapidly until immunity is acquired after which it begins 

to decrease. Under very high transmission, disease incidence peaks in the first year of life 

and by their fourth year children have few and mild episodes (Bloland, et a l, 1999). In areas 

with lower transmission, the disease incidence-age curve is flattened as disease episodes are 

spread over a wider age range and the incidences peak occurs at a higher age (Snow, et a l,  

1994; Modiano, et a l, 1999; Rogier, et a l, 1999b).

For reasons that are yet to be understood, severe malaria anaemia incidence peaks earlier 

than the incidence of cerebral malaria. In the Gambia (Marsh, 1992), in coastal Kenya 

(Marsh and Snow, 1997; Snow, et a l, 1997) and western Kenya (Bloland, et a l, 1999), the 

incidence of severe malaria anaemia peaks at 1-2 years while that of cerebral malaria peak 

between 2-4 years. It is possible that the smaller blood volume in children makes them more 

vulnerable to red cell damage and thus anaemia.
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Figure 1.3
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On the other hand, it has been suggested there may be an immune mediated element in cerebral 

malaria, which requires the maturation and sensitisation of the immune system An alternative 

theory is that cerebral malaria is caused by rare parasite strains and the delay in cerebral malaria 

simply reflects the low chance of encountering the causative strains (Gupta and Day, 1994). 

However, recent work by Bull et al (1998) suggests that parasite isolates that cause severe 

malaria are common with respect to the variant parasite-derived antigens expressed on surface 

of schizont-infected red cells (Bull, et a l, 1999).
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The risk of severe malaria in relation to transmission intensity

Two studies by Snow and his colleagues have been instrumental in redefining our 

understanding of the relationship between risk of severe disease and malaria transmission. 

These studies showed that contrary to the previous speculations the risk of severe malaria 

does not continue to rise with increasing transmission but rather plateaus and may even dip 

slightly at very high levels. The first study compared rates of severe disease between Kilifi, 

Kenya, (EIR = 10-30) and Ifakara, Tanzania (EIR >300). Although both sites had similar 

annual rates of severe disease in children under the age of 5 years there were twice as many 

patients under one years of age in Ifakara compared to Kilifi. The rates of cerebral malaria 

and malaria anaemia were four fold higher and 3 fold lower respectively in Kilifi compared 

to Ifakara (Snow, et al,  1994). In the second study, age specific severe malaria rates for five 

sites with varying transmission in Kenya and in the Gambia were estimated from hospital 

admission records. Kilifi North, an area of low-to moderate transmission had the highest 

rate while holo-endemic Siaya had the lowest (Marsh and Snow, 1997; Snow, et al,  1997). 

Similar observations were made when disease rates in low transmission urban area in Burkina 

Faso were compared with those of a high transmission rural area (Modiano, et a l,  1998b,

1999).

In these studies by Snow et al (1997), the mean age of patients admitted with severe 

malaria decreased with increasing transmission intensity, ranging from 77 months in Bakau, 

which is hypo-endemic, to about 25 months in the hyper-endemic Kilifi South. A possible 

explanation for these observations is that in high transmission areas children encounter 

malaria parasites very early in life and partial protection by residual passive immunity 

enables them to acquire specific immunity without having to suffer severe disease. An
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important question raised by these studies is whether by lowering transmission, bed nets and 

other control measures might increase the incidence of severe malaria disease.

In relation to transmission intensity, parasite prevalence presents a different picture from 

disease incidence. In most endemicity settings, the rise in prevalence is slower than that of 

disease incidence so that it is still rising when the peak of disease incidence is reached and 

continues to rise while disease incidence declines (Marsh, 1992). Eventually prevalence 

reaches saturation, remains constantly high, and only begins to fall much later during 

adulthood. The level of saturation correlates with transmission intensity although even at very 

low transmission, high prevalence is attained (Beier, et a l,  1999). Saturation is maintained by 

re-infection and by chronic infection. Even where disease incidence show marked 

seasonality, parasite prevalence remains fairly constant (Smith, et al,  1993; Babiker, et al,

2000). On the other hand, mean parasite density has a trend similar to that of disease with 

high parasite density infections occurring early in life, after which the majority of people 

have low-density parasitaemia (Trape, et al,  1994; Bloland, et a l,  1999) (Fig. 1.3 ).

1.4 THE CLINICAL FEATURES OF MALARIA

Malaria presents as a spectrum of symptoms ranging from mild aches to a life threatening 

condition although only a minority of malaria case progress to become severe. Both host and 

parasite-related factors interact to determine the outcome of a malaria infection but the nature 

of many of these interactions is still poorly understood. Many of the symptoms such as fever, 

vomiting, and joint pains that accompany acute episodes of malaria are non-specific and are e 

shared with other childhood diseases. Some of the important features of malaria commonly 

encountered in African children are discussed below (see review by (WHO, 2000)). The 

prevalence of these features, and mortality rates associated with them among children in 

Kilifi are shown in figure 1.4
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Fever

Paroxysms of chills, shivering and high fever followed by sweating are common features of 

malaria in non-immune individuals but are less obvious in semi-immune children. In 

addition, fever in children is an unreliable diagnostic feature of malaria as could arise from 

several other infections (Smith, et a l,  1995b). Fever, in malaria, is thought to be mediated by 

tumour necrosis factor (TNF) and other pyrogenic cytokines whose release by monocytes is 

triggered by toxins released during schizont rupture (Picot, et a l,  1990; Sherry, et a l,  1995; 

Kwiatkowski, et a l,  1997). Although high fever causes discomfort and could precipitate 

convulsions during an acute malaria attack, it is not associated with risk of sequelae or death 

(Marsh, et al,  1995; Waller, et al,  1995). The finding that temperatures corresponding to 

fever can kill malaria parasites in-vitro while anti- pyretic drugs increases parasite clearance 

time in-vivo (Brandts, et al, 1997) is indirect evidence that fever may be important in 

regulating parasitaemia. However, it is still a common practice to try and lower fever during 

malaria episode using antipyretic drugs, tepid sponging, and mechanical cooling.

Anaemia

While prolonged afebrile malaria infections in children may cause relatively benign chronic 

anaemia, acute malaria attacks can precipitate life-threatening anaemia. Severe malarial 

anaemia was originally defined by a haemoglobin of below 50g/l or a haematocrit > 15% in 

the presence of more than 10,000 malaria parasites/ul of blood but it is now recognised that 

there are other factors that might exacerbate anaemia even at lower parasite densities 

(Newton, et al,  1997). The rapture of infected erythrocytes by mature parasites, cannot 

solely account for the profound anaemia encountered in many malaria patients (Pasvol, 

1986). Increased immune haemolysis, phagocytosis (Abdalla, 1990; Yuthavong, et a l,  

1990) and splenic clearance (Greenwood, et al,  1978 ; Ho, et al, 1990b) of both infected
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and uninfected erythrocytes following sensitisation with IgG (Facer, 1980; Scholander, et al,

1998) and complement (Waitumbi, et a l,  2000) and changes in deformability (Dondorp, et 

al, 2000) have been cited as potential mechanisms. Dyserythropoiesis induced by malaria 

toxins and cytokines (Clark and Chaudhri, 1988; Miller, et a l,  1989) has also been 

implicated. The relative importance of each of these mechanisms is unclear at present.

Hypoglycaemia

Hypoglycaemia is a complication of acute malaria that is associated with a poor prognosis 

(Molyneux, et a l,  1989; Waller, et a l,  1995; Jaffar, et al,  1997; Schellenberg, et al, 1999). 

Though common, hypoglycaemia is often missed because its symptoms are easily confused 

with those of malaria itself. Quinine has been implicated as a possible cause of 

hypoglycaemia in malaria because it stimulates insulin secretion (Henquin, et al, 1975; 

Okitolonda, et al,  1987; Krishna, et a l,  1994). However, this is not important if quinine is 

administered as a slow infusion in conjunction with dextrose (Taylor, et a l,  1988). 

Hypoglycaemia in malaria is most likely attributable to a combination of fasting and 

increased glucose demand by the host and parasites (Davis, et al,  1990; Davis, et a l,  1995). 

Depletion of glucose precursors may depress gluconeogenesis (Dekker, et a l,  1997a) though 

the evidence for this is equivocal (Dekker, et a l,  1997b; English, et al,  1998). Other factors 

such as high TNF levels could also contribute to the depression of gluconeogenesis during 

malaria.

Respiratory Distress

Children with severe malaria sometimes exhibit laboured breathing characterised by nasal 

flaring, increased chest excursion, intercostal indrawing, and air hunger (Kussmaul’s 

breathing). Though recognised as a feature of malaria only recently, respiratory distress is
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one of the most important prognostic indicators in malaria (Marsh, et al, 1995). Potential 

causes of respiratory distress include cardiac failure, co-existent pneumonia (English, et al,  

1996b), pulmonary oedema, sequestration of parasites in the lungs and increased central drive 

to respiration in association with cerebral malaria. However, the major cause of respiratory 

distress is lactic acidosis (English, et a l,  1997b). The breathing pattern observed results from 

attempts to compensate by blowing out CO2. Impaired renal and hepatic function could result 

in pH dsyregulation, but the main cause of lactic acid accumulation appears to be poor tissue 

perfusion due to anaemia, dehydration and obstruction of blood flow by sequestered 

parasites leading to hypoxia and anaerobic respiration (Davis, et a l,  1995). The parasite’s 

contribution of acids is difficult to determine but it is thought to be minor. Thus, fluid 

replacement and blood transfusion are associated with resolution of acidosis and clinical 

improvement (English, et al,  1997a). In a minority of children without raised lactic acid, 

acidosis is attributable to other metabolic acids or acids from drugs such as aspirin 

(salicylate) (English, et al,  1996a) or herbal remedies.

Neurological involvement

Neurological involvement in malaria is signified by convulsions, impaired consciousness, 

abnormal posturing, and changes in muscle tone. Other features include raised intra-cranial 

pressure, and brain swelling. The pathogenesis of these features is discussed in detail later in 

this section.

Prognostic indicators in malaria

The fact that most children who die from malaria do so within 24 hours of admission to 

hospital, (Waller, et a l,  1995) necessitates the development of criteria by which children at 

high risk of deteriorating or dying can be rapidly identified and given priority in treatment.
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Several studies have identified deep coma, respiratory distress or acidosis and hypoglycaemia 

either independently or together as bearing the highest risk of sequelae and death. In addition, 

recurrent convulsions and jaundice are also associated with poor prognosis. Conversely 

anaemia unless profound, and hyperpyrexia on their own carry a low risk of death 

(Molyneux, et a l,  1989; Waller, et a l, 1995; Jaffar, et al,  1997; Schellenberg, et al,  1999) 

(also see fig 1.4 (Marsh, et a l,  1995)). The proportion of mature parasite in peripheral 

circulation (Silamut and White, 1993) but not overall parasitaemia (Sowunmi, et al,  1992) is 

also an important prognostic feature.

Of interest is the recent observation that decreased red cell deformability is highly predictive 

of death in Thai (Dondorp, et a l,  1997) and Kenyan (Dondorp, 1999) malaria patients. 

However, even in the best hospital, there is a proportion of malaria patients who will die, 

prompt treatment notwithstanding. Some of these may have presented too late for the damage 

by disease to be reversed while others may succumb to concurrent infections or poisoning by 

drugs and herbal remedies administered prior to hospitalisation.

The pathogenesis of cerebral malaria (CM)

Although for clinical purposes any malaria patient with impaired consciousness is considered 

to be severely ill and requiring urgent medical attention, for the sake of standardising 

reporting especially in research, the presence of unrousable coma in the absence of other 

encephalopathies is required to qualify the diagnosis of cerebral malaria (WHO, 2000). 

Despite affecting only a small percentage of malaria patients, cerebral malaria contributes 

significantly to malaria deaths and sequelae because of its high morbidity and mortality 

(Waller, et a l,  1995). The pathogenesis of cerebral malaria is a subject of intense debate. The 

matter is partly complicated by lack of a standardised definition of CM and partly by the fact
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that even when the current criteria are strictly applied, coma in the patients that are defined 

does not necessarily have a homogenous aetiology.

Marsh et a/.,(1996) have described four groups of CM patients. In three of the groups, coma 

resolves rapidly and usually without sequelae. Within the first group are children who are in 

coma secondary to convulsions (prolonged post ictal state) who regain consciousness once 

normal cortical function is restored. A second group has coma secondary to metabolic 

derangement including acidosis and hypoglycaemia, and resolution of coma follows the 

correction of these disturbances. A recently defined group are children who are comatose 

because they are actually having subtle seizures (status epilepticus) characterised by very 

mild muscle tics, nystagmoid eye movement, excessive salivation or irregular breathing and 

which are hard to discern except by electroencephalography (Crawley, et al,  1996). These 

children recover consciousness rapidly upon receiving anticonvulsants. The rest of the 

patients defined as having CM have prolonged coma and high odds of sequelae on recovery 

despite treatment and supportive care (Brewster, et a l,  1990). In these patients, coma and 

seizures probably arise from primary brain lesions caused by malaria parasites. It is in this 

group that the evolution of symptoms is least understood and most debated.

A number of hypotheses have been put forward to try and explain the development of CM. 

Extrapolation of data from experimental malaria in monkey models led to some early workers 

suggesting that CM results primarily from cerebral oedema. They postulated that malaria 

toxins compromised the integrity of the blood brain barrier allowing leakage of fluid from 

blood vessels into the brain (Maegraith and Fletcher, 1972).
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Figure 1.4
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Later studies suggested that macro molecules do not cross the blood brain barrier during malaria 

in human (Warrell, et al,  1986). CT scans indicate that the brain swelling and raised
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intra-cranial pressure in CM are associated with increased cerebral blood volume and 

cytotoxic rather than vasogenic oedema (Newton, et al,  1994). However, more recent 

studies indicate that CM may be accompanied by alterations in the distribution of cerebral 

vessels endothelial cell junction proteins and leakage of some plasma proteins into the peri

vascular space. It is therefore possible that functional changes of the blood brain barrier occur 

in CM (Brown, et a l,  1999).

The current explanations fall into two though not mutually exclusive hypotheses: the 

mechanical blockage and cytokine-mediated pathology (Grau and De-Kossodo, 1994; Mendis 

and Carter, 1995). The mechanical blockage hypothesis relies on the finding of a large 

number of parasitised erythrocytes sequestered in the cerebral vessels of patients who had 

died of CM but little signs of extra-vascular haemorrhagic or inflammatory pathology. 

(MacPherson, et al,  1985; Aikawa, et al,  1990; Pongponratn, et al,  1991). It is therefore 

thought that sequestered infected red cells obstruct blood flow in cerebral capillaries and the 

resulting hypoxia causes ischaemia and neuronal damage (Berendt, et al,  1994b). Cerebral 

lesions revealed by CT scans on Kenyan children with CM are consistent with a critical 

reduction in cerebral perfusion (Newton, et al,  1991; Newton, et al, 1994). Further, cerebral 

hypo-perfusion and decreased oxygen saturation in CM patients has been demonstrated by 

use of Positron emission CT (Kampfl, et a l,  1997). In addition to sequestration of infected 

cells in capillary, adherence of non-infected red cells to infected cells, a phenomenon known 

as rosetting (Udomsangpetch, et a l,  1989), is also thought to contribute to vascular occlusion 

in CM. Parasites from CM patients have been reported to have an increased tendency to form 

rosettes (Treutiger, et al,  1992; Ringwald, et al,  1993; Rowe, et al,  1995).

The mechanism underlying the binding of parasitised erythrocytes to endothelial cells and 

rosetting has been studied extensively (Berendt, et a l,  1994a; Newbold, et a l,  1997a). Ex
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vivo and in-vitro electron microscopy has shown that the binding is largely but not 

exclusively restricted to knobs-like structures on the infected cell surface (Biggs, et al,

1990). The knobs which consist of histidine rich proteins; HRPl and HRP2 are thought 

to provide support for binding receptors, the best characterised of which is PfEMPl (Leech, 

et a l,  1984a; Aikawa, 1988). Other proteins that might be involved in cytoadherence include 

rifins (Kyes, et a l,  1999), sequestrin (Ockenhouse, et al,  1991), and altered host cell 

membrane proteins (Crandall, et a l,  1994). The list of putative endothelial cell ligands that 

interact with the infected cell receptors has been growing longer and longer. Most wild 

parasite isolates bind to CD36 (Oquendo, et a l,  1989), while some bind to thrombospondin 

(Roberts, et al, 1985), ICAM-1 (Berendt, et al, 1989), PEC AM (Treutiger, et a l,  1997), 

ELAM (Ockenhouse, et a l,  1992), glycosaminoglycans, blood group antigens, (Barragan, et 

al,  2000) and chondroitin sulphate (Fried and Duffy, 1996). During malaria attacks some 

ligands such as ICAM-1 are up-regulated in the brain while others such as CD36 are not 

(McGuire, et a l,  1996). Thus, it is possible that only parasites that bind to particular ligands 

can cause CM, which would partly explain why only a small proportion of individuals 

develop despite evidence that sequestration takes place in practically all malaria patients 

(Newbold, e ta l ,  1997b).

Proponents of the alternative hypothesis argue that obstruction of blood flow by sequestration 

is not sufficient to explain the pathology seen in CM. They point out that the reversibility of 

CM coma and low incidence of sequelae are not compatible with neuronal damage due to 

hypoxia (Clark and Rockett, 1994). They suggest that the symptoms are a result of a cascade 

of local events prompted by the obstruction rather than of the obstruction per se. Occlusion of 

capillaries can provoke local inflammatory reactions resulting in the release of cytokines such 

as TNF that mediate tissue damage. Both TNF-a and interferon-y were found to be critical in
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murine CM as were CD4 + T helper cells (Grau, et a l,  1989a; Rudin, et a l,  1997). However, 

the mouse model differs from human CM in that there is no sequestration of parasitised red 

cells instead the vessels are plugged by mononuclear cells and fibrin-covered red cells. 

Although high levels of TNF in CM patients (Grau, et a l,  1989b; Kern, et a l,  1989; 

Kwiatkowski, et a l,  1990) and the association of TNF promoter gene polymorphism with 

susceptibility to CM (McGuire, et al,  1994) argues for TNF’s role in human CM, the 

absence of CM in P. vivax infections despite high TNF levels argues that TNF levels per se 

are not the critical factor.

TNF has been proposed to exert its action through several pathways one of which is the 

induction of nitric oxide (NO) (Rockett, et a l,  1992). Although NO is normally involved in 

cell signalling in the body, sustained high levels of NO can inactivate neurones. Because 

NO is very labile, its concentration in the body can only be determined by extrapolating 

serum nitrate and nitrite levels. Elevated levels of both molecules were reported in CM 

patients in Gabon (Kremsner, et a l,  1996), Papua New Guinea (al-Yaman, et a l,  1997), and 

Tanzania (Anstey, et a l,  1997). However, correction for impaired renal excretion eliminated 

the elevation in the Tanzanian study suggesting that the raised nitrogen intermediaries’ levels 

were due to retention rather than increased production of NO. Creatinine levels in the PNG 

patients were not suggestive of renal impairment and the original conclusion was upheld.

Clark and Cowden (1999) have attempted to reconcile the roles of TNF, NO and 

sequestration by suggesting that while complete obstruction of cerebral vessels could bring 

about irreversible brain damage, partial obstruction results in hypoxia that interacts 

synergistically with TNF to induce NO production. Excess induced NO subverts the normal 

neuronal NO feedback mechanism and inactivates the neurones. The resulting coma is
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resolved without permanent damage when NO levels fall and neuronal activity is restored. 

They suggest that TNF on it’s own is not adequate to induce sufficient NO in the absence of 

sequestration-induce hypoxia which would explain the absence of CM in vivax malaria 

(Clark and Cowden, 1999). It is unlikely that only one mechanism is responsible for the 

pathogenesis of CM, it is more likely each of the above mechanism contribute to varying 

degrees.

1.5 THE IMMUNOLOGY OF MALARIA

Innate and acquired immunity are important factors in determining the outcome of a malaria 

infection in an individual. Some genetic factors that provide innate protection against malaria 

have been recognized for sometime, while others have become evident only recently. 

Evidence for acquired malaria specific immunity is provided by the reduced incidence and 

severity of malaria episodes following repeated exposure.

Genetic resistance to malaria

Several genetic traits have been shown to confer resistance to malaria infection disease. 

However, for most traits, the mechanism underlying the protection they provide is poorly 

understood. The following is a brief review of genetics traits that are associated with innate 

immunity to malaria.

Protection against malaria by haemoglobinopathies

Haldane in 1949 was the first to hypothesize that the reason certain red cell defects have an 

unexpectedly high prevalence in malaria endemic areas is because protection against malaria 

gave heterozygotes selective advantage over non-carriers (reviewed by (Yuthavong and 

Wilairat, 1993; Weatherall, 1996; Weatherall, 1997)). Such protection is most evident in
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sickle cell heterozygotes who enjoy over 90% protection against severe malaria (Hill, et al.,

1991) while homozygous sicklers often die young from a variety of infections and effects of 

the defect (Molineaux, et al,  1979). Protection by a+ thalassaemia, though less (60% -40%) 

than that by sickle cell trait, is still significant (Bienzle, et al., 1972; Martin, 1994; Allen, et 

al,  1997). A large combined case-control study in Kenya and the Gambia found 40-50% 

protection against severe and mild malaria in both female heterozygotes and males 

hemizygote G6PD deficient individuals (Ruwende, et a l,  1995) contrary to earlier assertions 

that only heterozygote G6PD deficient females were protected (Bienzle, et al,  1972; Martin, 

1994).

The mechanisms by which haemoglobinopathies protect against malaria are poorly 

understood. Decreased parasite invasion and growth, possibly due to altered membrane 

characteristics and physiology in abnormal cells has been reported (Senok, et a l,  1997a; 

Senok, et al,  1997b). Although sickling of infected cells could physically injure the parasite 

or alter haemoglobin so that it is unavailable for the parasite, susceptibility of homozygote 

sicklers to malaria argue against this being the basis of protection in sickle cell trait (Nagel, 

1990). The susceptibility of G6PD deficient and thalassaemic cells to oxidative damage has 

been cited as a possible explanation for their protection against malaria. Increased oxidative 

stress by parasites could mediate cell damage and kill the parasite in the process (Friedman, 

1978, 1979; Golenser and Chevion, 1989). High potassium levels in culture media abrogate 

the effect of oxidants on thalassaemic and G6PD' malaria cultures (Friedman, 1979). Thus, 

the loss of this cation from infected thalassaemic G6PD' cells and sickle cells could be 

important in mediating parasite damage. At the same time, infected abnormal red cells 

exhibit reduced cytoadherence and rosetting, two phenomena that have been implicated in 

pathogenesis of cerebral malaria (Udomsangpetch, et al, 1993; Carlson, et a l,  1994).
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However, protection by haemoglobinopathies may not be purely passive; Increased 

phagocytosis of infected abnormal cells has been observed (Yuthavong, et a l,  1990). 

Acquired immunity against severe malaria disease following increased exposure to 

falciparum and vivax at an early age has been proposed as an explanation for the otherwise 

paradoxical observation by Williams et al (1996) that homozygous a+ thalassaemic Vanuatu 

children below the age of five are actually more susceptible to xmld. falciparum and vivax 

malaria (Yuthavong and Wilairat, 1997).

The effect of MHC and other gene polymorphisms on susceptihility to malaria

Unlike haemoglobinopathies that have easily distinguishable phenotypes, other genotypes 

that influence responses to malaria are less discernible and only following the recent 

advances in molecular techniques have they been detected. The role of the MHC genes that 

code for Human Lymphocytes Antigens (HLA) in inununity is well established. T-cells, 

which are central to specific inununity, only recognise foreign antigens that are presented in 

conjunction with self-HLA. The T-cells can then mediate cytotoxic and inflammatory 

functions or stimulate B-cells to produce antibodies. It is thought that the extensive diversity 

of HLA evolved because of the need to recognise the very large number of potentially 

harmful antigens in the environment. It has been postulated that the widely observed variation 

in immune responses to and outcome of malaria infection in individuals in endemic areas 

might be associated with MHC restriction (Quakyi, et al,  1989), (review by (Riley, et a l,  

1991; Riley, 1996)).

The clearest evidence for HLA association with malaria came from a large case-control 

study in Gambian children where possession of the class 1 HLA-Bw53 allele provides about
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40% protection against severe malarial anaemia and cerebral malaria while the class II alleles 

DRB 1*1302 protects against severe anaemia but not cerebral malaria (Hill, et a l,  1992). 

Correlation between the geographic distribution (25-40% in West African and absent in 

Caucasians) of these alleles and malaria endemicity lends support to the malaria selection 

hypothesis. The authors suggested that since HLA is expressed on hepatocytes but not red 

cells, T-cytotoxic lymphocytes (CTL) protect against severe malaria by killing the parasite’s 

liver stage. Subsequently they identified a conserved peptide from the liver-stage-specific 

antigen-1 (LSA-1) as the target for HLA-B53-restricted T-cells (Hill, et al., 1991). Objection 

has been raised against this liver-stage killing hypothesis on the grounds that HLA-B53 was 

not associated with protection against infection in this and later studies that found HLA-B53 

carriers and non-carriers to be equally susceptible to re-infection following radical cure 

(Carter, et al,  1992; Dieye, et al,  1997; Sokhna, et a l,  2000). It has been suggested that CTL 

may be involved in a non-HLA class 1-restricted protection (Kemeny, et a l,  1994), or that 

HLA-B53 may be linked to other genes that control immunity. HLA-B53 was not protective 

against malaria in East Africa, indicating that other genetic and environmental factors may 

modify the association between HLA and malaria outcome (Hill, et a l,  1994).

Other HLA alleles which have been reported to be involved in malaria immunity are HLA - 

DRB 1*0301 and -* 03032 which were positively associated with levels of antibodies 

against Rhoptry-Associated Protein 1 (RAPl) in Cameroonian children below the age of 15 

years and DRB *03011 which was positively associated with antibodies to RAP2 in adults 

older than 30 years (Johnson, et al,  2000). In Papua New Guinea, possession of class II 

HLA-DRB1*15 or a strongly linked HLA-DQB 1*0601 was reported to negatively associated 

with titres of antibody to the trial vaccine SPF66. Conversely, bearers of DRB 1*11 or 

DQB 1*0301 had higher antibody titres (Beck, et al,  1995b). Detecting genetic effects on a
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disease requires a large sample size and it is possible that studies that failed to find any HLA 

association with responses to the ring stage antigen RES A/ Pfl55 or the 230 and 48/45 

kilodalton gametocyte antigens may have been limited by small samples size (Graves, et al,  

1989; Riley, e ta l ,  1990).

Besides MHC, several other genes have also been studied to determine their association with 

immunity to malaria. Of particular interest are TNF promoter genes and a recently discovered 

ICAM-1 polymorphism. So far two mutations on the TNF promoter gene that affect malaria 

outcome have been identified; a point mutation at position 308 that is associated with 

increased risk of sequelae and death in children with cerebral malaria (McGuire, et a l,  

1994), and another mutation at position 238 that increases the risk of severe malarial 

anaemia (McGuire, et a l,  1999). The exact mechanism by which these mutations exert their 

effects is yet to be established, although the up-regulation of TNF leading to increased 

pathology has been considered. Position 238 does not seem to have role in the transcription of 

TNF and might be a marker for important polymorphisms elsewhere on the TNF gene. The 

two mutations are not linked suggesting that severe malaria anaemia and cerebral malaria are 

influenced by separate genetic factors linked to the TNF gene. One mechanism through 

which TNF is thought to promote pathology is by the induction of nitric oxide (NO). A 

mutation on the NO-synthase 2 (N0S2) gene that protects against severe malaria and 

infection has been identified by Kun et al (1998) in Gabonese children.

Given the potential involvement of ICAM-1 in the pathogenesis of cerebral malaria as a 

endothelial cell receptor for infected cells during sequestration, one would expected that 

natural selection in malaria areas would favour ICAM-1 mutations that were protective 

against severe malaria. Surprisingly, a mutation that increases susceptibility to cerebral
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malaria was found at high frequencies in Kenya and other malaria endemic areas. 

Homozygous ICAM-1 is associated with a 2-fold increase in the risk of cerebral malaria 

relative to the wild type ICAM while heterozygote have a 1.39 relative risk (Femandez- 

Reyes, et a l,  1997). ICAM-1^^^^ has a lower binding affinity for malaria infected red cells 

compared to the wild type ICAM-1, the reduction being more marked in low binding 

affinity clones than in high affinity binders. Thus it is possible that ICAM-1^^^^ increases 

susceptibility to cerebral malaria by selecting out parasites with high binding affinity leading 

to increased parasite sequestration and pathology.

ICAM-1^^^ was not associated with disease severity in the Gambia (Bellamy, et a l,  1998) 

while in Gabon it was actually protective against anaemia (Kun, et a l,  1999). This may not 

be surprising as severe malarial anaemia, the dominant clinical syndrome in Gabon, has a 

different aetiology from cerebral malaria. It is difficult to envisage how a gene that increases 

susceptibility to cerebral malaria is maintained at high frequencies in malaria endemic areas 

except by the presence of a very strong balancing selection pressure. ICAM-1 is known to be 

the binding receptor for Human Rhinovirus (HRV) that causes common cold (Craig and 

Berendt, 1991). Although HRV do not cause mortality, they might have been more virulent in 

the past thus lowered affinity for HRV or other pathogens in ICAM-1^^^ could have counter 

balanced the increased in susceptibility to severe malaria.

Further evidence of the genetic control of immunity to malaria comes from population, 

twins, and family pedigree studies (Taylor-Robinson and Philips, 1993; Hill, 1997). In a 

study among sympatric ethnic groups in West Africa, the Fulani had different parasite 

prevalence, malaria antibodies titres and allelic profiles of genes involved in malaria 

outcome compared with the Mossi and Rimaibe. Permethrin impregnated nets had a higher
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impact on parasite rates among the Fulani than in the other two groups (Modiano, et al, 

1998a). A segregation analysis of blood infection levels among 44 Cameroonian families 

was consistent with a complex genetic control of malaria immunity that is not inherited in a 

Mendelian manner (Garcia, et a l,  1998) Another family study in Burkina Faso identified a 

region of the short arm of chromosomes 5 that is associated with the control of parasitaemia. 

This region has genes that are implicated in the regulation of immune responses including 

cytokines IL-3 IL-,4, IL-12, and macrophage stimulating factors (Rihet, et a l,  1999). It is 

clear from these studies that genetic associations in malaria are very complex and a lot 

remains to be known. Hopefully, the recently completed sequencing of the human genome 

will provide an opportunity for the rapid identification of other genes involved in malaria .

Acquired immunity

Despite years of research, surprisingly little progress has been made in unravelling the 

mechanisms underlying immunity to malaria. Decreasing frequency and severity of malaria 

episodes with age are the best indicators of acquisition of immunity (Fig. 1.3) but defining an 

individual’s inunune status at a given time is extremely difficult. Many in-vitro measures of 

immunity in malaria simply reflect exposure but do not correlate with in-vivo protection 

(Hoffman, et a l,  1987; Marsh, et al, 1989; Thelu, et al,  1991). Furthermore, there are no 

fully appropriate falciparum malaria models from which data could be reliably extrapolated 

to man. Disentangling protective responses from non-protective ones in the complex milieu 

of responses provoked by malaria parasites is a major objective in many studies (Marsh, 

1992; Miller, et al, 1997). A “Unified theory” of malaria immunity is yet to be established 

but several models have been proposed.
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Anti-Parasite and anti disease immunity

The observation that parasite prevalence continue to rise long after disease incidence has 

fallen led to the idea that immunity to malaria develops in two phases. Anti-disease 

immunity, which controls disease symptoms and allows individuals to remain asymptomatic 

despite having parasites, is acquired first (Sowunmi, et al,  1992; Karunaweera, et a l,  1998; 

Vounatsou, et a l,  2000) while immunity against parasitisation develops later. This two-phase 

paradigm is supported by data from malariatherapy records. Practised in the mid 20* century, 

malariatherapy involved deliberately infecting syphilis patients with malaria on the premise 

that the fever induced by malaria would kill syphilis spirochetes. In most patients, fever and 

high parasitaemia occurred in the first 25 days after which a low-density asymptomatic 

infection persisted for many months. This suggests that “anti-disease” responses set in earlier 

than anti-parasite immunity (Collins and Jeffery, 1999b). In reality, these two phases are 

poorly distinguished and must overlap to a large extent otherwise anti-disease immunity 

acting in the absence of anti-parasite immunity would not prevent the parasites from 

multiplying and eventually overwhelming the patient, albeit asymptomatically. It is likely 

that the two types of immunity probably share the underlying mechanisms (Rogier, et al,  

1999a). For example, since the risk of disease is proportional to parasitaemia (Rougemont, 

et a l,  1991; Smith, et al,  1994), immune mechanisms that clear parasites are also likely to 

reduce the risk of disease.

The disquisition of “original antigenic sin” hypothesis in malaria

An alternative outlook is that the same mechanisms that kill parasites also cause disease, 

and immune status reflects a balance between protection and immuno-pathology. T-cells 

from people without prior exposure to malaria are know to respond well to some malaria 

antigens, possibly because of prior sensitisation by cross-reactive antigens in the environment
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(Chizzolini, et a l,  1990; Good, 1994b; Troye-Blomberg, 1994; Riley, 1999). However, 

many of these responses are not protective against malaria. Thus, in non-immune individuals, 

skewing of responses towards previously encountered cross-reactive antigens in accordance 

with the ‘original antigenic sin’ paradigm (Fazekas de St and Webster, 1966; Kohler, et al, 

1994) could prevent protective malaria-specific responses (Good, et a l,  1993) but still 

provoke immuno-pathology. Good et al (1995) have suggested that the acquisition of 

immunity to malaria might involve the elimination or tolerization of such pre-sensitised T- 

cells (Good, 1995). The possession of a larger repertoire of cross-reactive T-cells might help 

explain why non-immune adults appear to have more severe malaria episodes on their initial 

encounters with malaria parasites compared to equally non-immune children (Baird, 1995; 

Riley, 1999).

Premunition in malaria

Individuals who are immune to malaria do not necessarily have a complete resistance to 

infection, instead they are able to tolerate and maintain chronic infections at very low 

parasite densities (Marsh, 1992; Smith, et al, 1993). It has been speculated that chronic 

infections are in themselves protective against super-infection. This kind of immunity was 

designated “Premunition” by Sergent and Parrot (1935). Work done in animal models 

suggests that premunition may be species- and strain-specific. The importance of chronic 

infections in premunition has been demonstrated in squirrel monkey - P. Knowlesi model 

where eradicating chronic infections by chemotherapy abrogated protection against super

infections. However, some degree of immunity persisted for sometime after the cure 

(Sinton, 1939; Singh and singh, 1940). Studies in Tanzania (Smith, et al, 1999) and Papua 

New Guinea (Al-Yaman, et al,  1997a), suggest that in humans, premunition against malaria 

is related to the multiplicity of clones in the established infection rather than the infection per
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se. Clonicity of an infection is determined with respect to the number of allelic variants of 

polymorphic antigens such as MSA-1, MSA-2, and GLURP present. In a longitudinal study 

among children in Kilifi, being parasitaemic at the beginning of a follow-up period was only 

associated with protection against subsequent episodes of severe malaria in children who also 

had agglutinating antibodies to certain parasite isolates at that time. The possession of the 

agglutinating antibodies was not independently associated with protection while being 

parasitaemic alone was independently associated with increased susceptibility to subsequent 

severe disease episodes (Bull et al, in prep.)

Despite the fact that the idea of premunition in malaria was first mooted in the early part of 

the 20* century, to date, little is understood of the underlying mechanism. Because 

splenectomy abrogates the ability to maintain chronic infections in animal models (Contamin, 

et al,  2000), it has been suggested that activated macrophages in the reticulo-endothelial 

system of the spleen might be important in the maintenance of low parasite densities in 

chronic infections and in preventing super-infection (Sinton, 1939; Weiss, et a l,  1986). Such 

a proposal is consistent with the antibody-dependent cellular inhibition (ADCI) mechanism 

of maintaining chronic infections proposed by Druihle and Perignon (1997) discussed in 

fuller details later in this section. Because this mechanism is parasite density dependent, an 

increase in the number of merozoites, as might be caused by a super-infection, would results 

in increased production of ring stage inhibitors by macrophages and consequently the 

suppression of the super-infecting parasites population. However, ADCI is not clone-specific 

and therefore does not sufficiently account for the association between premunition and the 

multiplicity of the chronic infections and with the possession of variant-specific agglutination 

antibodies. Possibly premunition involves a synergistic interaction between non-variant 

specific mechanisms, including ADCI, and variant-specific mechanisms directed against
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polymorphic antigens such as those that are targets for agglutination antibodies. In such a 

scenario, parasites bearing antigen variants that are homologous to those on the parasites 

causing the chronic infection would be stopped from re-infecting the host. Thus, a wider 

repertoire of clones in the chronic infection would give a wide cover against super-infection 

by the locally circulating variants. The observation by Bull (2001) in the study cited above 

that children who were parasitaemic at the beginning of the study also agglutinated a larger 

number of isolates compared to those who were not, lends further support to this hypothesis.

The strain transmission theory and development of immunity to malaria

It has been suggested that malaria is transmitted as a construct of many independent “strains” 

and that one needs to accumulate immunity to each of the strains before they are wholly 

immune to malaria (Gupta and Day, 1994). An observation in malariatherapy that point to 

the strain specificity of malaria immunity. The observation during malariatherapy that 

previous infections gave considerably more protection from re-infection by a homologous, 

than by a heterologous strain (Jeffery, 1966; Collins and Jeffery, 1999a) is evidence for 

strain-specific immunity

Unlike in the laboratory where strains can be physically separated, it is difficult to imagine 

how such a population structure could be sustained in the field despite sexual mixing 

(Ranford-Cartwright, et a l,  1993; Babiker, et al,  1994; Hill and Babiker, 1995). However, 

using mathematical models, Gupta et al (1999) have shown that efficient immunity directed 

against a polymorphic antigenic determinant could constrain parasite populations into 

discrete non-overlapping strains with respect to that antigen (Gupta and Day, 1994; Dye, 

1996; Gupta and Anderson, 1999; Gupta, et al,  1999b).
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Polymorphism is a common feature of many malaria antigens and is generated through 

recombination during fertilization and/or clonal antigenic variation (Anders and Smythe, 

1989; Borst, et a l,  1995). The circumsporozoite protein (CSP) (Dame, et a l,  1984; Lockyer, 

et al,  1989) and thrombospondin-related adhesive protein (TRAP) (Robson, et a l,  1998) on 

the surface of sporozoites all have regions of extensive polymorphism as does the major 

merozoite antigens; m erozoite surface proteins (MSP-2 & MSP-2) (Cooper, 1993; Felger, et 

al,  1994), ring stage erythrocyte surface antigen (RESA) (Perlmann, et al,  1984) and the 

apical membrane antigen-1 (AMA-1) (Verra and Hughes, 1999). The parasite-induced 

erythrocyte surface antigens (PIESA) inserted by mature parasites on to the surface of the 

host red cells, examples of which are PfEMPl and rifins, also exhibit extensive 

polymorphism (see section 1.5). The location of T-cell epitopes in the polymorphic regions 

of some of these malaria antigens, and the preponderance of non-synonymous mutations in 

these regions suggest that the regions may be under immune selection pressure (Favaloro, et 

al,  1986; Anders and Smythe, 1989; Lockyer, et al,  1989; Hughes and Hughes, 1995; Verra 

and Hughes, 1999)

Responses against PIESA are an example of immunity that might be sufficiently efficient to 

structure malaria parasite population into “strains” (for a detailed review see section 1.5). 

These antigens are highly polymorphic and undergo clonal antigenic variation (Roberts, et 

al,  1992; Brannan, et al,  1994). Antibodies to PIESA provide variant-specific protection 

against malaria (Marsh, et al,  1989; Newbold, et a l,  1992; Bull, et a l,  1998; Bull, et al,

1999). It is thought that the variation of these antigens serve as an parasite immune evasion 

mechanism and therefore the need to avoid the generation of cross-reactive responses would 

provide the selection pressure necessary to maintain distinct variants. The number of PIESA 

variants against which an individual has antibodies increases with age (Iqbal, gr al,  1993;
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Reeder, et a l,  1994; Bull, et a l,  1998). Thus, acquisition of immunity to malaria might 

involve the accumulation of antibodies against the circulating repertoire of PIES A variants.

Also emerging from models proposed by the same research group is the hypothesis that 

contrary to classical thinking, immunity to severe disease may develop after only one or two 

episodes of disease (Gupta, et ah, 1999a; Gupta, et al,  1999b). However, in a study in the 

Gambia, children who had severe malaria did not differ from controls in their ability to 

agglutinate randomly selected parasite isolates suggesting that they had had similar past 

malaria exposure (Erunkulu, et a l,  1992). A model based on the finding that parasite 

variants that caused severe disease were more commonly agglutinated than those causing 

mild disease has been proposed by Bull et al, (1999). In this model there is a gradual trade 

off between virulence on the one hand and immunogenicity on the other. Virulent variants 

carry more immunogenic antigens and are thus more commonly recognised by antibodies 

from a malaria endemic population while benign variants have less immunogenic antigen 

phenotype (Bull, et a l,  1999). It is not clear if immunity to severe disease operates 

independent of immunity to mild malaria.

Persistence of acquired immunity to malaria

There is a serious dearth of data on the persistence of malaria immunity. The susceptibility 

of residents in low seasonal transmission areas to repeated infection suggests that any 

immunity they develop during the infections is short-lived in the absence of continuous 

exposure. In addition, the loss of agglutinating antibodies within a period of 4 months has 

been reported (Giha, et al,  1998). However, during the recent malaria epidemics in the 

Madagascan highlands, some adults were partially protected against clinical malaria despite a 

thirty-year lapse since their last infection (Deloron and Chougnet, 1992). Furthermore,
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immigrants from endemic areas to Italy who returned to their native countries after a number 

of years suffered milder malaria episodes and had lower parasitaemia than Italian visitors (Di 

Pern, et a l,  1994; Di Perri, et a l,  1995). These two reports suggest that an important degree 

of immunity to malaria may last longer than was previously thought.

Immune effector mechanisms in malaria immunity

The question of which immune mechanism are effective against malaria parasites is not any 

more clearer than that of how immunity develops. The relative importance of the cellular and 

humoral arms of the immune system in protection against malaria is not yet well established. 

This is partly due to lack of data in humans and partly because their relative importance 

varies markedly in different no-human models.

T-cells.

Humans T-cells can be divided into two main groups depending on their surface markers and 

the class of HLA that they interact with. CD4+ T-cells, which are restricted by class II 

HLA, provide help to B-cells and other effector cells, and as such are also referred to as T- 

helper cells. On the other hand, CD8+ T-cells, which interact with class I HLA, are also 

referred as cytotoxic T-cells (CTL) because they kill infected cells by various means. There is 

also a minor subset of T-cells that express yô receptors rather than ap receptors, and whose 

interaction with MHC is still uncertain. Roles for these three T- cell subsets in immunity to 

malaria have been described through either indirect observation in humans or in animal 

models. The caveat here is that many animals in which studies of malaria immunity have 

been carried out are poor models of human malaria.
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CD8+ T-cells (CTL)

Because hepatocytes express class 1 HLA, the liver stage of malaria parasites is thought to be 

capable of inducing CTL responses. The role of CTL in the protection against malaria was 

first demonstrated in the classical experiments involving the immunization of animals and 

human with irradiated sporozoites. Such immunization resulted in complete, though short

lived, immunity (Rieckmann, et al,  1974; Clyde, 1975). Adoptive transfer and depletion 

experiments in animals showed that although high levels of anti-sporozoite antibodies were 

observed in the immunized subjects, the protection observed was mediated by CTL 

(Schofield, et al,  1987; Suss, et al,  1988; Weiss, et al,  1988). The fact that adoptively 

transferred CTL pre-primed with P. berghei failed to protect against infection by P. yoelii 

indicates that protection by CTL is species- specific (Romero, et al, 1989). Indirect evidence 

for CTL protection against malaria in humans is borne in the association between some class 

1 HLA alleles and protection against malaria (Hill, et a l,  1991). Over 30 peptides on the 

sporozoites and liver stage antigens of malaria parasites have now been identified as epitopes 

for human CTL (Aidoo, et a l,  1995; Bottius, et al, 1996; Aidoo and Udhayakumar, 2000). 

Some of these epitopes exhibit extensive polymorphism generated by non-synonymous 

mutations, an indication that they are under some sort of selection possibly by host immunity 

(Lockyer, e ta l ,  1989; Schofield, 1989; Hughes and Hughes, 1995).

CTL could kill parasites by perforin-mediated lysis, FAS-induced apoptosis of infected cells 

(Kagi, et al, 1994; Lowin, et a l,  1994), or via a cytokine pathway in which IFN-y stimulates 

the host cell to kill the parasites through nitric oxide production. The importance of the 

cytokine pathway has been demonstrated in mice (Schofield, et al,  1987) but the contribution 

of the other mechanisms remains unclear.
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Although naturally infected individuals show relatively poor responses to circumsporozoite 

protein (CSP) and the liver stage specific antigen (LS A) possibly because of low numbers of 

sporozoites in mosquito innocula and the lack of CTL co-stimulatory signals on hepatocytes 

(Aidoo, et al,  1995), it might be possible to boost this responses using a vaccine (Hoffman 

and Franke, 1994). Irradiated sporozoites, though strongly immunizing, (Rieckmann, et al, 

1974; Clyde, 1975) are impractical for large-scale vaccination thus the need to identify 

specific CTL epitopes in malaria antigens. Several peptides that are putative epitopes for CTL 

have been shown to provide effective immunization in animal models (Romero, et a l,  1989; 

Bottius, et a l,  1996). An important part of CTL vaccine design is the vehicle for delivery. 

Both naked DNA coding for CSP (Sedegah, et al,  1994; Wang, et a l,  1998) and live vectors 

such as recombinant Salmonella typhimurium (Aggarwal, et al, 1990), and influenza or 

vaccinia viruses (Rodrigues, et al,  1994) have been used successfully in experimental 

immunization. The potential hazard of live vectors could be avoided by using recombinant 

yeast-Ty virus-like particle expressing CS epitopes that have been shown to produce 

impressive levels of CTL activation in mice, (Gilbert, et al,  1997).

A prorriising recent development in CTL-based vaccinology is the prime-boost technique 

that involves priming a subject with naked plasmid DNA coding for the target antigen and 

later boosting the responses with the target antigen borne on a different carrier such as 

Modified Vaccinia Virus, or Fowlpox Virus. This technique has been shown to provoke 

strong CTL responses in animal models (Sedegah, et al,  1998; Gilbert, et a l,  1999) and this 

forms the basis for the ongoing studies on the possibility of using the technique against 

human malaria. Two concerns in CTL vaccines that require consideration are the 

polymorphic nature of some CTL epitopes that might restrict the number of people 

responding to a particular vaccine construct (Good, 1994a ; Aidoo and Udhayakumar, 2000)

42



and the mutual inhibition of CTL responses by variants of the same epitope (Gilbert, et ah, 

1998; Plebanski, et a l, 1999). The first problem could be circumvented by the use of 

multivalent vaccines (Doolan, et a l, 1996), while the second can only be resolved by 

experimentally determining which epitopes might be mutually antagonistic.

CD4+ T-cells.

Traditionally mature CD4+ T-cells are placed in two groups that are associated with distinct 

cytokine profiles. Production of interferon alpha/gama (INF-a/y), lymphotoxin-a (TNF-p), 

interleukin-12 (IL-12) defines type 1 helper cells (THl) and is associated with a strong cell- 

mediated immunity while production of IL-4, 5, 6, 9, 10 and 13 define type 2 (TH2) which 

is associated with antibody production. However, because some T-cells and non-T-cells can 

produce both THl and TH2 cytokines, it may be more appropriate to talk of a type 1 (TRl) or 

a type 2 response (TR2) (Clerici and Shearer, 1994). In malaria, the TR1/TR2 dichotomy is 

most clearly seen in the mouse-P. chabaudi model. In this model, TRl dominates the early 

response of mice to acute P. chabaudi infection and parasite killing is mediated by INF-y, 

tumour necrosis factor (TNF-a) and nitric oxide (NO) secreted by activated THl CD4+, 

macrophages, and natural killer cells. TRl cytokines - NO, INF-y and TNF-a are also 

thought to mediate disease symptoms. On the other hand, a shift towards TR2 leads to less 

symptomatic chronic infections. Along with inhibiting both INF-y and TNF-a, type 2 

cytokines also stimulate B-cells to secrete of antibodies (Taylor-Robinson, 1995; Pretolani 

and Goldman, 1997; Fell and Smith, 1998). The dual anti-parasite/ pathogenetic nature of 

TRl is also evident in P. berghei infections (Rudin, et a l, 1997; Hirunpetcharat, et a l, 1999). 

Other murine-malaria models display variable tendencies towards either type of responses 

during acute and chronic infections (Taylor-Robinson and Smith, 1999).
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The distinction between type 1 and 2 responses is less clear in human malaria. Increased IFN- 

y is associated with the resolution of parasitaemia in acute malaria episodes (Winkler, et a l,

1998) and a delay in re-infection (Luty, et a l, 1999), while reduced levels accompany 

hyper-parasitaemia in children (Winkler, et a l, 1999). INF-y levels were also found to be 

higher in pregnant women who did not have placental malaria than in those who did (Moore, 

et a l, 1999). These observations argue for a possible anti-parasite role of TRl in humans. On 

the other hand, IL-10 and IL-4, both type 2 cytokines, have been associated with protection 

against malarial anaemia (Kurtzhal, et a l, 1998; Biemba, et a l, 2000). Although reduced 

secretion of INF-y by immune T-cells in response to malaria led to the conclusion that 

reduced pathology in immune individuals may be attributable to down-regulation of TRl 

cytokines (Chizzolini, et a l, 1990), Winkler et al (1999) observed a striking increase in type 

1 cytokines in immune adults (Winkler, et a l, 1999). It is likely that efficient immunity to 

malaria requires a balance between TRl and TR2. The effect of HIV infection, which 

selectively destroys CD4+ cells, (Rosenberg and Fauci, 1990) on malaria is still not well 

established. Although some studies suggest that HIV infection is not associated with 

increased malaria morbidity or mortality (Migot, et a l, 1996; Chandramohan and 

Greenwood, 1998), others suggest the converse might be true especially in HIV patients with 

advanced decline in CD4+ counts (Whitworth, et a l, 2000) and in HIV-positive pregnant 

women (Steketee, et a l, 1996). Taken together these observations suggest that in less 

advanced stages of HIV infections, other mechanisms may compensate the loss of CD4+ T- 

cells in the maintenance of malaria immunity (Butcher, 1992,).

yô T-cells

In healthy individuals, the majority of T-cells receptors are made up of a and p chains, 

however a minority of T- cells, whose MHC restriction is uncertain, express receptors made

44



of y and ô chains. Infection with malaria causes a marked increase in the proportion of yô T- 

cells (Ho, et a l, 1990a; Goodier, et a l, 1992) but the significance of this phenomenon is yet 

to be established. Most of the work that indicate a role for yô T-cells in resistance to malaria 

is based on mice that had immunological disruptions (Tsuji, et a l, 1994; Langhome, 1996; 

Yanez, et a l, 1999) and may not necessarily reflect the situation in immunologically intact 

mice or human. Nonetheless, there is evidence that yô T-cells from both malaria immune and 

non-immune individuals can produce INF-y, TNF-a, and LT-a in response to malaria 

antigens. Thus yô T-cells might be involved in early type 1 reactions in acute malaria 

infections (Ho, et a l, 1990a; Goodier, et a l, 1992; Ferrick, et a l, 1995; Pichyangkul, et a l, 

1997; Waterfall, et a l, 1998; McKenna, et a l, 2000).

Humoral responses in malaria

There is no doubt that humoral responses are important in protection against malaria. 

Evidence for in-vivo protection against malaria by antibodies comes from passive transfer 

experiments both in animal models (Groux and Gysin, 1990) and humans. Passive transfer 

of immunity to malaria in man was first demonstrated in a series of experiments carried out 

in the early 1960s by Cohen, Macgregor, and Carrrington. In these experiments, intra

muscular administration of purified gamma globulins from malaria immune African adults 

into Gambian and East African children suffering from severe malaria caused a marked drop 

in parasitaemia within five days. Gamma globulins from Europeans without prior exposure 

to malaria did not show the parasitocidal effect, indicating that the antibodies from Africans 

were malaria-specific (Cohen, et a l, 1961; McGregor, 1963). In addition, Edozien et al 

(1962) showed that antibodies that protected against malaria could be obtained from cord 

blood thus demonstrating the maternal transfer of anti-malaria antibodies (Edozien, et a l, 

1962). More recently, Sabchareon et al (1991) repeated these experiments in Thai malaria
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patients who they treated with intravenous IgG from malaria immune African adults. A 

marked drop in parasitaemia within 24 hours of treatment was observed in all the 8 patients 

(Sabchareon, et a l, 1991; Druilhe and al, 1997). The faster rate of response in the Thai 

experiments compared to those observed in the earlier ones is probably due to the different 

route of administration of the antibodies.

In-vitro, antibodies from immune individuals have been shown to inhibit sporozoites invasion 

of hepatocytes (Fidock, et a l, 1997; Pasquetto, et a l, 1997), prevent merozoites invasion of 

red blood cells (Vande Waa, et a l, 1984), depress parasite growth (Mitchell, et a l, 1976; 

Brown and Smalley, 1980; Flyg, et a l, 1997), and promote parasite phagocytosis by 

macrophages (Druilhe and Khusmith, 1987; Groux, et a l, 1990). In addition, immune serum 

can disrupt resetting (Carlson, et a l, 1990; Wahlgren, et a l, 1990; Treutiger, et a l, 1992) and 

the binding of infected erythrocytes to endothelial cell ligands (Udeinya, et a l, 1983; Iqbal, et 

a l, 1993; Ricke, et a l, 2000); two process that are implicated in the pathogenesis of 

severe malaria. However, it is not clear how these in-vitro activities correlate with effector 

mechanisms in-vivo.

Despite the evidence cited, the malaria literature is replete with reports of lack of a 

correlation between total antibody titres and malaria protection (Marsh, et a l, 1989; Thelu, 

et a l, 1991; Erunkulu, et a l, 1992). The majority of malaria antibodies are probably directed 

against cellular debris released when schizonts burst and are of little consequence. However, 

even antibodies against antigens that are deemed to be important for parasite survival often 

do not correlate with protection (Hoffman, et a l, 1987). There are several reasons why this 

could be. The immuno-dominant regions of many malaria antigens consist of tandem amino 

acid repeats, altering the number of which is an easy way to generate polymorphisms that
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may help the parasite escape immune recognition (Anders and Smythe, 1989; Lockyer, et a l, 

1989; Day and Marsh, 1991). At the same time, polymeric antigens can cross-link B-cell 

antigen receptors and induce T-cell independent antibody production that is characterised by 

IgM dominance and poor affinity maturation and memory cells induction. Besides being 

short-lived and ineffective, T-cell independent responses can also thwart protective 

responses to adjacent critical epitopes through epitopic inhibition (Schofield, 1991).

Under a variety of in-vitro situations, malaria antibodies are often ineffective against 

parasites in the absence of effector cells and may even promote parasite growth (Shi, et a l, 

1999). Despite exhibiting potent anti-parasitic activity in-vivo, the antibodies used in the 

transfer experiments in Thailand showed no activity in-vitro except in presence of monocytes 

(Bouharoun-Tayoun, et a l, 1990; Sabchareon, et a l, 1991). Conversely, antibodies that do 

not protect in-vivo were unable to interact with monocytes in-vitro (Groux and Gysin, 1990). 

Thus the ability of antibodies to co-operate with effector cells may be more important than 

their quantity (Bouharoun Tayoun and Druilhe, 1992). It has been noted that humoral 

responses to malaria show pronounced skewing towards cytophilic antibodies IgGl and 

IgG3, unlike responses to other pathogens where IgGl and IgG2 dominate (Ferrante and 

Rzepczyk, 1997). This bias has been reported severally in responses against ring-infected 

erythrocyte surface antigen (RESA) (Dubois, et a l, 1993; Beck, et a l, 1995a), merozoites 

surface antigens (MSA 1/2) (Taylor, et a l, 1995; Rzepczyk, et a l, 1997) and schizont 

antigens (Thelu, et a l, 1991; Nguer, et a l, 1997; Piper, et a l, 1999b).

This skew towards cytophilic antibodies that need to bind to effector cells before they can 

mediate any action against antigens could explain the failure of malaria antibodies to exert 

anti-parasitic activity on their own. In-vitro work has shown that while cytophilic antibodies
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cooperate with monocytes in inhibiting parasites, non-cytophilic subclasses antagonise this 

cooperation. Data from field studies indicate that young children and non-immune adults 

have a high proportion of non-cytophilic antibodies (Wahlgren, et a l, 1983), while cytophilic 

antibodies are associated with protection against infection (Salimonu, et a l, 1982; Aribot, et 

a l, 1996; Ferreira, et a l, 1996) and better prognosis during acute malaria episodes (Sarthou, 

et a l, 1997). Taken together, these data suggests that acquisition of immunity to malaria may 

involve a shift in responses from non-cytophilic to cytophilic antibodies (Bouharoun Tayoun 

and Druilhe, 1992).

An interesting observation in the transfer experiments was the failure of passively transferred 

antibodies to completely eradicate all the parasites. This may have parallels in the failure of 

otherwise highly immune individuals to eliminate chronic low-grade infections. One proposal 

is that the parasites that escaped the transferred immunity comprised “strains” of parasites 

against which the antibodies lacked specificity. Two arguments against this are that the 

antibodies from immune African adults are expected to be directed against multiple antigens, 

which should help overcome restriction, by the strain-specificity of responses to some of the 

antigens, and more importantly, the same antibodies were subsequently shown to be effective 

against the breakthrough parasites. Druilhe and Perignon (1997) have proposed a density 

dependent mechanism to account for the observations above (Druilhe and Perignon, 1997). 

They have coined the term antibody dependent cellular inhibition (ADCI), for a proposed 

cytophilic antibody-mediated interaction between monocytes and merozoites that cause the 

monocytes to release mediators that reversibly inhibit the growth of parasite ring stages. The 

amount of inhibiting mediators released is proportional to the ratio of merozoites to 

monocytes, which explains why the drop in parasitaemia following injection of immune IgG 

was proportional to the initial parasitaemia. Decline of either antibody levels, or numbers of
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monocytes or merozoites reverses inhibition and the parasite population flares up. A further 

implication of the hypothesis is that since the inhibiting mediators are non-specific, this 

mechanism does not select for particular parasite variants. However, the huge in drop 

parasitaemia seen in the transfer experiment is more consistent with a parasitocidal rather 

than the parasitostatic effect implied by ADCI and other antibody-mediated mechanisms 

cannot be excluded.

Malaria antigens that are targets for immune response.

At each stage of their human cycle, malaria parasites present to the host antigens that are 

potential targets for immune responses. Some of the antigens from each stage that are well 

characterised are indicated in figure 1.5. It is hoped that the sequencing of the malaria 

genome will facilitate even more rapid identification of potentially important antigens. Due to 

limitation on space and the focus of this thesis, I will only describe briefly some the major 

merozoite antigens and then provide a more detailed review of the variant antigens inserted 

onto the surface of infected red blood cells by mature stages of malaria parasites.

Merozoite surface Proteins 1

MSP-1 and MSP-2 are the best characterised antigens on the surface of merozoites. MSP-1 

consists of 17 blocks; 7 highly polymorphic blocks interspersed with 10 conserved and 

semi-conserved blocks. Despite the polymorphisms, there is sufficient homology between 

sequences of MSPl from different parasite isolates to allow the distinction of two allelic 

families; K1 and MAD20, in all the blocks except in block 2 where three allelic families; 

K l, MAD20 and R033 are recognised. MSP-1 is initially synthesized as a high molecular 

weight precursor (195 kDa) that subsequently undergoes proteolytic processing to yield 

fragments of 83, 42, 36, 28 - 30, and 19 kDa (reviewed by (Cooper, 1993; Holder, 1994).
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The exact function of MSP-1 is not yet defined but it is thought to be involved in the binding 

to and invasion of erythrocytes by merozoites (Cowman, et al., 2000).

Merozoites are briefly accessible to the host immune system between schizont rapture and the 

invasion of a new red cell and are thus possible targets for protective immunity. Although 

immune responses to the 83 kDa and 42 kDa fragments (Fruh, et al., 1991; Riley, et ah, 

1992; Tolle, et al., 1993) and also to block 2 (Conway, et al., 2000) have been shown to be 

associated with protection against natural infections in West African children, the most 

effective responses against MSP-1 appear to be directed at the 19 kDa carboxy-terminal 

fragment (MSP-11 9 ). In vitro, antibodies against this fragment can inhibit merozoite invasion 

of red cells (Egan, et al., 1999) while immunization of mice with the P. yoelii equivalent of 

this region protect them against challenge infections by the same species. (Daly and Long, 

1993) Epidemiological studies indicate that levels of anti-MSP-lig antibodies are in strongly 

correlated with protection against clinical malaria among Sierra Leonian (Egan, et a l, 1996), 

and Gambian children (Riley, et a l, 1992; Shai, et a l, 1995) and also among Kenyan 

children and pregnant women (Branch, et a l, 1998). Studies in Kenya and Senegal suggest 

cytophilic antibodies responses to these targets may be particularly important (Shi, et a l, 

1996; Nguer, e ta l,  1997).

Merozoite Surface Protein-2 (MSP-2)

MSP-2 is a 42 KD protein that exist as two allelic families: 3D7/CAMP and FC27. The 

protein has five blocks, with relatively conserved blocks 2 and 4 flanking an allele-defining 

variable block 3. For some unexplained reason, parasites bearing alleles of the FC27 family 

have been reported to be associated with increased severity of malaria episodes 

(Engelbrecht, et a l, 1995; Al-Yaman, et a l, 1997b). Evidence for the protective role of
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responses against MSP-2 comes from both experimental work in animals and also immuno- 

epidemiology studies. Mice immunized with conserved regions of P. falciparum MSP-2 were 

protected against challenge infection by both P. falciparum and P. chabaudi. (Saul, et a l, 

1992). Studies in West Africa (Taylor, et a l, 1998), Papua New Guinea, (Al-Yaman, et a l, 

1997b) and Solomon islands (Rzepczyk, et a l, 1997) have demonstrated decreased risk and 

severity of clinical malaria among individuals who had antibodies against MSP-2. A skew 

towards cytophilic antibodies similar to that observed in the case of responses to anti-MSP-1 

has also been observed in anti-MSP-2 response (Taylor, et a l, 1995; Rzepczyk, et a l, 1997).
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Apical Membrane Antigen -1 (AMA-1)
P. falciparum AMA-1 is an 83 kDa antigen that appears to originate from the apical end of 

the merozoite and is then transported to its surface. The identification of AMA-1 as a 

potential target for malaria responses is based mainly on work on its homologues in animal 

malaria parasites. Monoclonal antibodies against PK66, which is a 66kDa P. knowlesi 

homologue of AMA-1, inhibits merozoite invasion of red cells. In addition, immunization of 

rhesus monkeys with PK66 provided strong protection against challenge infection (Deans, et 

a l, 1982; Deans, et a l, 1988). P. fragile AMA-1 coupled with a Monatinide ISA 720 

adjuvant has also been shown to provide squirrel monkeys with protection against P. fragile 

and also P. falciparum infection (Collins, et a l, 1994). There is evidence that humans also 

respond to AMA-1 and a high (94%) age-related prevalence of anti-AMA-1 antibody levels 

was observed in Guinea-Bissau. Similarly high prevalence was observed in Senegal although 

the age trend was absent (Thomas, et a l, 1994). Although the antibodies were not associated 

with decreased infection or clinical severity, analysis of the polymorphic region of this 

antigens revealed a preponderance for non-synonymous mutations suggesting that the region 

might be under some selection pressure from the host immune system (Verra and Hughes,

1999). AMA-1 is a constituent of NYVAC-Pf7, a multivalent vaccine, which was shown to 

be safe and inununogenic in man. However, this vaccine did not protect a group of 35 

volunteers from challenge infections. (Ockenhouse, et a l, 1998).

Rhoptry associated proteins-1/2 (RAP-1/2)

RAP-1 and 2 are proteins with a relatively conserved amino acid sequence. RAP-1 is 

processed into 86, 82, 70, and 67 kDa polypeptides that then form complexes with RAP-2 or 

RAP-3. The complex is expelled from the rhoptries during invasion and carried through to 

the parasitophorus vacuoles with the merozoites (Ridley, et a l, 1990b). These proteins are 

thought to be involved the invasion of red cells, although gene knockout experiments suggest
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that parasites can still invade red cell even after the disruption of RAP-1 (Cowman, et a l,

2000). Monoclonal antibodies against RAP-1/2 are able to stop erythrocyte invasion in-vitro 

(Schofield, et a l, 1986). Furthermore, Immunisation with RAP-l/RAP-2 protects Saimiri 

monkeys from a lethal challenge of P. falciparum (Ridley, et a l, 1990a). The results of 

studies involving several areas with different malaria endemicity showed that the prevalence 

of anti-RAP-1 IgG and IgM antibodies increase with increasing endemicity and is associated 

with chronic or acute infections but not protection against malaria (Jakobsen, et a l, 1997).

Ring stage erythrocytes surface antigen (RESA)

RES A is a 155kDa protein that is expressed on the interior side of infected erythrocytes 

shortly after merozoites invasion. It can be detected in this location by modified indirect 

immunofluorescence assay (Perlmann, et a l, 1984). Structurally, RESA consist of two 

regions of tandem amino acid repeats that contain both T-cell and B-cell epitopes (Favaloro, 

et a l, 1986). Anti-RES A antibodies are able to stop reinvasion of erythrocytes by merozoites 

In-vitro (Wahlin, et a l, 1984; Wahlin Flyg, et a l, 1999). Passive immunization with human 

anti-RES A antibodies (Berzins, et a l, 1991) and active immunization with recombinant 

RESA (Collins, et a l, 1986; Collins, et a l, 1988) protects Aotus monkeys against challenge 

infections. However, several studies in humans have reported either no correlation or a 

negative correlation between anti-RESA antibody titres and protection against malaria 

(Wahlgren, et a l, 1986; Chougnet, et a l, 1990; Dubois, et a l, 1993). On the other hand. 

Beck et al (1995) reported that while total anti-RESA antibody titres were not correlated with 

protection, the levels of cytophilic antibody (IgGland IgG3) were. However, a recombinant 

vaccine containing RESA along with two merozoites antigens failed to provide any 

protection against parasites in 12 human volunteers (Lawrence, et a l, 2000).
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Antigens on the surface of malaria schizont-infected erythrocytes

Our current knowledge of the parasite-induced variant antigens on the surface of malaria- 

infected erythrocytes has emerged from studies on three phenomena that initially seemed 

unrelated: 1) the isolate-specific agglutination of schizont-infected erythrocytes by sera from 

malaria immune hosts. 2) The attenuation of parasite virulence through repeated passaging in 

splenectomized animals and 3) the absence of mature forms of malaria parasites in peripheral 

blood circulation.

Eaton (1938) was first to demonstrate that sera from Rhesus monkey that were immune to P. 

knowlesi agglutinated erythrocytes bearing P. knowlesi schizonts while sera from non- 

immune monkeys did not. The immune sera did not however agglutinate uninfected 

erythrocytes or erythrocytes containing immature stages suggesting that a new antigen was 

being expressed on the surface of the schizont bearing erythrocytes. Subsequently, Brown et 

al (1965) observed that during chronic malaria infections, sera obtained prior to a 

recrudescence peak did not agglutinate parasites associated with the peak while sera obtained 

after the peak did. These observations suggested that the recrudescence corresponded with 

the emergence of parasites with novel antigenic determinants against which the host had no 

agglutinating antibodies and raised the possibility that malaria parasites undergo antigenic 

variation similar to that seen in trypanosomes. The antigens in P. knowlesi that are targets for 

the agglutinating antibodies were eventually isolated and characterised by Howard et al in 

1983. These antigens, designated SICA (Schizont-infected Cells Agglutination) have a 

molecular mass of 180-210 kDa, were accessible to lactoperoxidase radio-iodination, 

insoluble in non-ionic detergent such as Triton X-100 but soluble in sodium dodecyl sulphate 

(SDS) and could be immunoprecipitated by malaria immune sera.
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In the course of working with malaria animal models, it was observed that repeated passaging 

of parasites through splenectomised animals resulted in the parasite becoming progressively 

less virulent. For example, P. cynomolgi parasites isolated from splenectomised Rhesus 

monkeys either failed to establish a patent infection or produced relatively low parasitaemia 

in intact animals (Schmidt, et a l, 1987). A relationship between virulence and the expression 

of SICA antigens was established in several studies which reported that passaging parasites 

through splenectomised animals attenuated not only their virulence but also their 

agglutinating capacity (Barnwell, et a l, 1982. Biggs, 1991 #608; Gilks, et a l, 1990). The 

parasite used in these studies were cloned, indicating that the changes described above 

reflected antigenic variation rather than simply the selection of parasites with a particular 

phenotype from a mixed population. Consequently, it was shown that the spleen and the 

presence of specific antibodies were essential in the expression and variation of the SICA 

antigen (Barnwell, et a l, 1983a; David, et a l, 1983; Fandeur, et a l, 1995)

Third, it has been known for sometime now that in some malaria infections including those of 

P. falciparum in human, mature parasites are absent in the peripheral circulation as they 

sequester in the capillaries of organs such as the heart (Luse and Miller, 1971), liver (Gilks, et 

a l, 1990), and brain (Aikawa, 1988). Sequestration is thought to contribute to malaria 

pathology by occluding blood flow in the affected organs while helping the parasite avoid 

splenic clearance. Erythrocytes bearing mature parasites attach to endothelial cells by Knob

like protrusions on the surface (Rudzinska and Trager, 1968; Luse and Miller, 1971; Kilejian, 

1979; MacPherson, et a l, 1985). Some of the proteins that are associated with knobs have a 

bias for histidine in their amino acid constitution and were therefore designated knob- 

associated histidine-rich-protein (KAHRP) (Leech, et a l, 1984a). Reduced cytoadherence 

observed in parasites that have lost the KAHRP genes through either spontaneous

chromosomal truncation during culturing (Biggs, et a l, 1989) or targeted disruption (Crabb,
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et a l, 1997) confirmed the importance of knobs in cytoadherence. In addition, Nakamura et 

al (1992) have demonstrated that parasite receptors for the endothelial cell adhesive ligands 

CD36 and thrombospondin are restricted to knobs. However, the lack of an extra-cellular 

domain and fact that some knob-bearing parasites fail to cytoadhere (Aley, et a l, 1984; 

Rock, et a l, 1988) while on the converse some knob-negative parasite exhibit cytoadherence 

(Crabb, et a l, 1997) suggest that expression of KAHRP is not sufficient for cytoadherence. 

Other proteins found in the knobs that do not directly mediate cytoadherence but may be 

important in maintaining the integrity of knobs include PfEMP2 (Lustigman, et a l, 1990) and 

PFEMP3 (Van Schravendijk, et a l, 1993; Waterkeyn, et a l, 2000).

In-vitro models of infected red cells cytoadherence to endothelial cells have been developed 

using melanoma cells (C32), human umbilical vein endothelial cells (HUVEC), and other 

transformed cell lines (Udeinya, et a l, 1981; Marsh, et a l, 1988; Udeinya, 1990). That 

sequestration is related to spleen-induced antigenic variation was deduced from the fact that 

splenectomy abrogated in-vivo sequestration of mature parasite while in-vitro, parasites 

passaged through splenectomised monkeys failed to bind to melanoma cells (David, et a l, 

1983). Similar observation was made in a murine-P. chabaudi model (Gilks, et a l,  1990) and 

in splenectomized malaria patients (Looareesuwan, et a l, 1993).

Endothelial cell ligands for cytoadherence

Thrombospondin (TSP), a 420 kDa glycoprotein synthesised by platelets and other adherent

cells such as macrophages was the first to be identified as a receptor for cytoadherence.

Infected erythrocytes were shown to adhere to a plastic surface adsorbed with TSP but not

with other adhesive glycoproteins such as fibronectin and laminin. Adhesion to adsorbed TSP

correlated with binding to C32 melanoma cells and could be reversed by anti-TSP antibodies

(Roberts, et a l, 1985). However, there were reasons to believe that TSP was not the only
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cytoadherence receptor (Sherwood, et a l, 1989). There is compelling evidence that CD36 is a 

cytoadherence receptor. Infected cells adhere to CD36 immobilised on plastic and this 

adherence can be inhibited by the monoclonal anti-CD36 antibody: 0KM5. Cytoadherence 

to C32 melanoma cells is also inhibited by 0KM5 (Panton, et a l, 1987; Barnwell, et a l, 

1989). Binding of infected red cell to Simian COS cells transfected with cDNA is reversible 

by anti-CD36 antibodies (Oquendo, et a l, 1989). However, the absence of CD36 in brain 

capillaries, (Aikawa, 1988) the lack of correlation between CD36 binding and disease 

severity (Marsh, et a l, 1988; Ho, et a l, 1991) and the fact that some binding was insensitive 

to both anti-CD36 and Anti-TSP antibodies led to the search of an alternative cytoadherence 

receptor.

By screening COS cells transfected with cDNA for various adhesion molecules, Berendt et al 

(1989) demonstrated that intercellular adhesion molecule 1 (ICAM-1) is also a cytoadherence 

receptor for some parasite lines (Berendt, et a l, 1989). ICAM-1 is considered a potential 

mediator of sequestration in cerebral malaria because of its presence in cerebral vessels and 

its up-regulation by malaria cytokines (Willimann, et a l, 1995; McGuire, et a l, 1996; 

Newbold, et a l, 1997b; Kaul, et a l, 1998). Cytoadherence to CD36 and ICAM-1 differ in 

that the former causes a static arrest of infected cells, while the latter allows the infected cells 

to continue rolling on the adhesive molecules. Thus cytoadherence in-vivo may involve 

synergy between the two molecules (Cooke, et a l, 1994; McCormick, et a l, 1997; 

Udomsangpetch, e ta l,  1997).

Other putative ligands for cytoadherence include CD31/PEC AM (Treutiger, et a l, 1997),

glycosaminoglycans, blood group antigens (Barragan, et a l, 2000), thrombomodulin

(Rogerson, e ta l,  1997), complement receptor-1, (CRl) (Rowe, et a l, 1997) and CSA (Fried

and Duffy, 1996, Reeder, 1999 #576) (review by (Coppel, et a l, 1998)). The last receptor is
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of particular interest as it is expression is up regulated in the placenta and also parasites that 

bind CSA do not bind CD36 (Rogerson, 1995; Fried and Duffy, 1996). It has been suggested 

that selection of previously unencountered CSA-binding parasites in the placenta might 

explain the increased incidence of malaria during pregnancy in otherwise malaria immune 

women (Bray and Sinden, 1979; Maubert, et al., 2000; Ricke, et al., 2000).

PfEMPl

Some of the knob associated antigens that are directly involved in cytoadherence in P. 

falciparum were identified by Leech et al in 1984 (Leech, et al., 1984b) who described 

proteins of parasite origin with a molecular weight of 260 kDa -  350 kDa and properties 

similar to those of P. knowlesi SICA antigens, i.e. they were accessible to lactoperoxidase- 

catalysed radio-iodination of infected erythrocytes and the radio-iodinated proteins were 

cleaved by low concentrations of trypsin; they were immuno-precipitated in a strain- 

specific manner by immune sera that also blocked cytoadherence of the source cells in a 

strain-specific fashion; finally the proteins were insoluble in non-ionic detergents such as 

Triton X-100 but soluble in SDS. These proteins, which are expressed on the infected 

erythrocytes surface 1 8 - 4 8  hours after invasion, were named Plasmodium falciparum 

erythrocytes membrane protein 1 (PfEMPl).

Var genes

The genes that code for PfEMPl remained inaccessible until 1995 when their discovery was

simultaneously published by three research groups. Su et a/., (1995) identified the genes

while using Yeast artificial chromosomes (YACs) to map a segment of chromosome 7 that is

linked to chloroquine resistance and designated them var. By screening the genomic DNA

expression library of MC parasites with anti-PfEMPl serum, Baruch et al.,{1995) identified

cDNA that coded for PfEMPl, while Smith et al (1995) showed that expression of the
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putative genes in a given parasite clone correlates with the expression of clone-specific 

PfEMPl. Each parasite is estimated to have approximately 50 var genes located mainly in the 

sub-telomeric regions of chromosomes (Fig. 1.6A). Though very diverse, these genes have a 

similar basic structure consisting of two exons. The first exon codes for multiple extra

cellular domains that are homologous to the cystein-rich domains of P. falciparum 

erythrocyte binding antigens (EBA175) (Rodriguez, et a l, 2000) and the P. knowlesi duffy 

binding proteins (DABP) (Adams, et a l, 1992) and have therefore been termed Duffy 

binding-like domains (DBL). A short trans-membrane region precedes the second exon 

coding for a conserved sub-membrane acidic terminal segment (ATS) that probably anchors 

PfEMPl in the knob (Voigt, et a l, 2000).

The first extra cellular domain (DBLl) is relatively conserved and is adjacent to another 

conserved region, the cystein-rich inter-domain region (CIDR) (Smith, et a l, 2000b). 

Conservation of these two regions is suggestive of functional constraint and in fact the two 

have been shown to be the binding sites for CD36, PECAM/CD31, blood group antigens and 

glycosaminoglycans (Baruch, et a l, 1997; Chen, et a l, 1998a; Smith, et a l, 1998; Chen, et 

a l, 2000). PfEMPl from different parasites isolates have different number of extra-cellular 

domains and this appears to influence the isolates’ binding phenotype so that while ICAM-1- 

binding A4var (Gene ID 3540145) has five DBL and two CIDR domains (Fig. 1.6B), FCR3 

var CSA (Gene ID 6165411) has seven DBL domains and one CIDR (Smith, et a/., 2000b).

PfEMPl is an infected erythrocytes receptor for vascular endothelial cells ligands

There is overwhelming evidence that PfEMPl is indeed a receptor for a number of

endothelial cells adhesive ligands. Gardner et al (1996) reported that treatment of schizont-

infected erythrocytes with V8 proteases and trypsin abrogated the binding of parasite clones

A4, C9, and C18 to ICAM-1 and CD36-coated plates respectively. This suggested that the
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binding is mediated by a receptor with characteristics similar to those of PfEMPl, i.e. 

protease-sensitivity. In addition, the differential sensitivity of the binding of each clone to 

proteases corresponded with the expression of a different variant of PfEMPl. These 

observations provided strong evidence that PfEMPl binds to CD36 and ICAM-1 and also 

that these two ligands bind to different parts of this PfEMPl. Further evidence for the role of 

PFEMPl in binding was provided in studies by Baruch et al (1996). They showed that 

affinity purification of detergent extracts of radio-iodinated infected cells using CD36, 

ICAM-1, and TSP yields proteins with all the properties of PfEMPl. The binding phenotype 

of the purified proteins corresponded with the binding phenotype of the infected cells from 

which they were extracted. Furthermore, trypsinization of intact PRBC yield protein 

fragments that bound specifically to CD36 and TSP. Pre-adsorption of the infected 

erythrocytes with antibodies against CD36 or TSP markedly reduced the binding of the 

purified proteins. Taken together these data confirmed that PfEMPl is the parasitised 

erythrocyte receptor for CD36, TSP, and ICAM-1 (Baruch, et ah, 1996).

Examination of the binding characteristics of different DBL domains of PfEMPl expressed in 

mammalian cell lines identified the relatively conserved CIDR as the binding site for CD36 

(Smith, et a l, 1998; Chen, et a l, 2000) while the binding sites for CD31/PEC AM, blood 

group antigens, glycosaminoglycans and non-immune IgM were located on DBLl (Chen, et 

a l, 2000). DBL-2 and the C2 domain were shown to mediate binding to ICAM in parasite of 

the A4 clone (Smith, et a l, 2000a) while DBL3 and 7 mediate the binding to CSA (Buffet, et 

a l, 1999).
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Figure 1.6A 
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In addition, recombinant proteins containing PfEMPl DBLl were found to adhere to un

infected erythrocytes, disrupt naturally formed rosettes and prevent rosette formation and also 

bind to heparin sulphate matrix suggesting that rosette formation may involve interaction 

between PfEMPl and a heparan sulphate-like molecule on the un-infected red cell surface 

(Chen, g? fl/., 1998a).

Other Antigens on the surface malaria-schizont infected red cells

The isolation of sequestrin, a protein with similar properties to PfEMPl, except for 

solubility in Triton X-100, as a putative parasite receptor for endothelial cell ligands 

(Ockenhouse, et a l, 1991) gave the hint that besides PfEMPl there were other antigens on 

the surface of infected red cells (Fig. 1.7). Recently, rifins, which are highly polymorphic, 

low molecular mass (20-40 KDa), radio-iodinatable, SDS-soluble, Triton x-100 insoluble 

proteins that are expressed 14-16 hours after parasite invasion were identified (Kyes, et a l,

1999). Rifins have characteristics similar to those of rosettins described earlier on by Helmby 

et al (1993) and Walgren et al (1994) as the putative parasite receptors for un-infected red 

cell in rosettes and it is likely that the two protein families are synonymous. Each parasite 

has over 200 copies of rif genes clustered in the sub-telomeric regions of its chromosomes 

(Bowman, et a l, 1999; Gardner, et a l, 1999) and may be able to express more than one copy 

at a time.

Rifins are less sensitive to cleavage by trypsin than PfEMPl and one study has suggested

that agglutination seen in trypsinized infected eell may reflect rifins-mediated agglutination

(Fernandez, et a l, 1999). However, trypsin-resistant PfEMPl-mediated agglutination has

been reported previously (Gardner, et a l, 1996). Second, there is data to suggest that

increasing concentrations of trypsin cleave PfEMPl in a progressive manner, beginning from

the N-terminus so that even at a concentration of 100 ul/ml a part of the extra-cellular
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domains that could mediate some agglutination remain (Fagan, 1999). Third, Kyes et al 

(1999) were unable to immuno-precipitate rifins using pooled malaria immune sera. Thus, the 

evidence for lifins-mediated agglutination is equivocal.

STEVOR belong to a multi-gene family that is closely related to rif genes. Like n/genes they 

are located at the telomeres and have two exons of sizes similar to those of rif genes. To date, 

the location and function of the products of STEVOR genes have not yet been established but 

the predicted proteins appears to have three trans-membrane regions suggesting the presence 

of an extra-cellular loop (Cheng, et a l, 1998,Horrocks, 2000 #614).

Previous work has shown that loss of cytoadherence to melanoma cells during prolonged in- 

vitro culturing of malaria parasites is associated with deletion of the right arm of the parasites 

chromosome 9 (Kemp, et a l, 1992; Day, et a l, 1993; Bourke, et a l, 1996). Using positional 

cloning, Gardiner et al 2000) located a gene on this chromosome that is involved in 

maintaining cytoadherence to melanoma cells. Ablation of cytoadherence following targeted 

disruption or inhibition with anti-sense RNA of the cytoadherence-linked asexual gene 

(CLAG9) confirmed its involvement in cytoadherence (Trenholme, et a l, 2000). CLAG9 

proteins are yet to be isolated but the predicted structure has four putative trans-membrane 

sequences suggestive of the presence of extra-cellular domains, (see also review by (Cooke, 

et a l, 2000)
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Figure 1.7
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Schematic representation o f the molecules implicated in the cyto-adhesive interaction between 
red cells and vascular endothelial cells or syncitiotrophoblasts. A region o f a PRBC membrane 
incorporating a characteristic knob-like protuberance formed by the deposition parasite-encoded 
proteins such as KAHRP and PfEMPl under the membrane skeleton o f the PRBC is shown. The 
solid arrows indicate interactions that have been unequivocally confirmed while the broken 
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have not precisely mapped. Abbreviations: integrins; CLAG - cytoadherence-linked

asexual gene; CRl - complement receptor 1; CSA - chondroitin sulphate A; HA - 
hyaluronic acid; HS - heparan sulphate; ICAM-1 - intercellular adhesion molecule 1; 
KAHRP - knob-associated histidine rich protein; PECAM-1- platelet-endothelial cell
adhesion moelculel, PfAdhelsin - modified native red cell band 3 protein; TM -
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The mechanism of antigenic variation

The most common way to demonstrate the variation over space and time of the antigens on 

the surface of schizont-infected erythrocytes has been by agglutination assays. By examining 

the agglutination of both field and laboratory- adapted parasites isolate by a panel of sera 

from people who are semi-immune, several studies have established that these antigens are 

extremely diverse and rarely are two isolates found that share similar agglutination profiles 

(Marsh, et a l, 1986; Forsyth, et a l, 1989; Aguiar, et a l, 1992; Reeder, et a l, 1994). This 

lack of cross-reactivity between isolates is also revealed in the low rate of mixed 

agglutination observed between isolates (Newbold, et a l, 1992). Although other antigens 

besides PfEMPl have been found on the surface of schizont-infected, their role in 

agglutination is not very well established, on the other hand several pieces of evidence 

suggest that PfEMPl is a major target for agglutinating antibodies: the correlation between 

changes in var genes and with changes in agglutination phenotype (Smith, et a l, 1995a); 

the correlation between sensitivity of a given PfEMPl variant to trypsin digestion and ability 

of trypsin to abrogate agglutination of the source cells (Gardner, et a l, 1996) and the change 

in parasites agglutination phenotype following selection on endothelial receptors such as 

ICAM-1 which interact with PfEMPl (Roberts, et a l, 1992). Agglutination data from the 

field can be taken as an indicator of the extremely diversity of PfEMPl and hence var genes.

Analysis of var DBLl domain from a panel of different parasite isolates suggests that this

diversity is generated by frequent chromosomal recombination during cross-fertilization in

mosquitoes (Ward, et a l, 1999; Taylor, et a l, 2000). Such a suggestion is consistent with the

fact that var genes are found in the sub-telomeric region of most chromosomes (Rubio, et a l,

1996) where chromosome recombination is most frequent. It is clear that var genes

expression undergoes a high rate of switching {in-vitro) (Roberts, et a l, 1992; Brannan, et a l,

1994; Gardner, et a l, 1996) but how this happens remains an open question. By drawing
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parallels from antigenic variation in other organisms such as trypanosomes, a number of 

mechanisms by which antigenic variation in malaria parasites could proceed have been 

proposed (Borst, et a l, 1995, Barry, 1997 #233; Cross, et a l, 1998). While there is no 

evidence for duplicative transposition of inactive var genes into expression sites, there is 

evidence that active genes may be irreversibly lost through deletion (Deitsch, et a l, 1999). 

Experiments using reporter genes fused to a var promoter suggest that var expression may be 

under epigenetic control (Deitsch, et a l, 1999; Newbold, 1999). Although each parasite only 

express one var gene product on the surface, it appears that initially all var genes are 

transcribed and then selectively degraded to leave only one (Chen, et a l, 1998b). As 

indicated earlier, the spleen (Gilks, et a l, 1990) and antibodies have a role in promoting var 

switching (Barnwell, et a l, 1983a; David, et a l, 1983) but practically nothing is known about 

the signalling mechanism involved.

Why antigenic variation ?

Because the relative importance of all the antigens on the surface of schizont-infected red

cells is yet to be established, for the purpose of this discussion all the surface antigens

including PfEMPl, rifins, and sequestrin will collectively be referred to as parasite-induced

erythrocyte surface antigens (PIESA). Before discussing the field data on human responses to

PIESA I will consider briefly the relationship between PIESA, antigenic variation and host

immunity. The amount of genetic resource (2%- 6% of the parasite genome in case of

PfEMPl) (Su, et a l, 1995) dedicated to PIESA suggests they may have a major survival

value. As parasites inside red cells are potentially concealed from the immune system, it

puzzling why they express PIESA that give away their location. The classical view is that

since changes on the host cell membrane as the parasite matures would eventually make the

infected cell susceptible to non-specific splenic clearance (Pongponratn, et a l, 1989),

PIES As' basic function is to sequester the parasites away from the spleen. This view is
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supported by observations that parasites passaged in splenectomised animals show reduced 

expression of PIESA and sequestration (Barnwell, et a l, 1983a; Barnwell, et a l, 1983b; 

David, et a l, 1983; Gilks, et a l, 1990) and also the fact that splenectomised monkeys, 

unlike intact monkeys, are unable to control the parasitaemia of PIESA-expressing parasites 

(Contamin, et a l, 2000). Because the host would eventually mount an immune response 

against PIESA, antigenic variation is seen as way of trying to evade these immune responses 

once they are mounted (Brown and Brown, 1965).

However, two alternative views have been offered for the expression of PIESA. Newbold et 

al (1999) have suggested that the expression of PIESA by non-cytoadherent malaria species 

indicates that PIESA predates cytoadherence and might initially have evolved for other 

reasons. The recent findings that P. falciparum attaches to and inhibits maturation of 

dendritic cells through PfEMPl points to the modulation of the host immune system as a 

possible reason for the evolution of PIESA (Urban, et a l, 1999). A third view is that PIESA 

may be a parasite population self-regulatory mechanism. By making the otherwise concealed 

parasites visible to the immune system it enables the host to respond and control 

parasitaemia. Hence, antigenic variation is a way of maintaining a balance between an 

overwhelming asexual parasitaemia that would the kill host before transmission has 

occurred, and the complete elimination of parasites by the host immune system (Hayward, et 

a l, 1999; Piper, et a l, 1999a; Saul, 1999). The fact that some knobless parasite lines are 

unable to maintain a chronic infection lends some credit to this view (Gilks, et a l, 1990).
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Immune response to parasite Induced erythrocyte surface antigens (PIESA)

Studies in animal models
PIESA’s location on erythrocytes surface, their characteristics, and potential involvement in 

the pathogenesis of malaria suggest that they are bound to provoke immune responses in the 

host. Early information on immune responses to PIESA came from studying responses to the 

antigens involved in schizont-infected cell agglutination (SICA) that were subsequently 

shown to be the animal malaria equivalent of P. falciparum PIESA, and from studies of the 

strain-specific protection of experimentally infected animals against re-infection by parasite 

strains homologous to the primary infection.

The development of SICA assays and the demonstration that SICA is variant-specific (Eaton, 

1938) made the assays a useful tool for studying antibody responses to PIESA. Brown et al, 

(1965) were the first to observe that during chronic infections of P. knowlesi in rhesus 

monkeys, each parasitaemia relapse was accompanied by the appearance of SICA antibodies 

that were specific to the relapse parasites within six days. Subsequently they showed that the 

titres of SICA antibodies to a given parasite strain/variant reached a peak three weeks after 

infection then dropped slightly in the next three weeks before stabilising for at least four 

months (Brown, et a l, 1968). Butcher and Cohen (1972) also reported similar kinetics of 

SICA antibodies responses against P. Knowlesi in rhesus monkeys.

There are several pieces of evidence pointing to the involvement of SICA antibodies in 

variant-specific protection against malaria in animal models. First, several studies have 

clearly shown that antibody responses are an important factor in promoting antigenic 

variation (of SICA antigens) in different animal malaria models (Barnwell, et a l, 1983a; 

David, et a l, 1983, Fandeur, 1995 #63). These studies provide indirect evidence that the
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interaction between antibodies and SICA antigens is sufficiently adverse to cause the parasite 

to try and evade it by altering its SICA phenotype. Second, the SICA antigens equivalent in 

P. falciparum have been shown to be involved in the sequestration of mature forms of the 

parasites in deep vasculature of host organs as a way of escaping the immune system. 

Sequestration is thought to contribute to the pathogenesis of P. falciparum malaria. Thus, 

one way that antibodies against this antigens could protect against P. falciparum infections is 

to prevent sequestration. David et al (1983) showed that resolution of P. falciparum 

infections in squirrel monkeys following treatment with immune sera was preceded by an 

increase in the proportion of mature parasites in the peripheral circulation of the animals, 

suggesting that the immune sera reversed sequestration. Finally, the involvement of SICA 

antibodies in the opsonization of infected cells m-vivo has been reported (Brown and Hills, 

1971).

However, it should be noted that each relapse during the experimental chronic infections 

cited above, resulted in a lower peak parasitaemia than in the previous relapses (Brown and 

Brown, 1965). This suggests that with repeated exposure to malaria parasites, the hosts 

eventually developed some degree of variant-transcending immunity that might or might not 

have been directed against SICA antigens.

Studies in humans

Agglutination and surface immunofluorescence assays have been adapted from animal 

studies to facilitate studies on human immune response to PIESA (Marsh, et a l, 1986). 

Other assays that have also been used include serum-mediated disruption of rosettes 

(Wahlgren, et a l, 1990), cytoadherence inhibition (Udeinya, et a l, 1983) and flow cytometry 

(Piper, et a l, 1999b). Although it is not clear how these assays relate to anti-PIESA immune 

mechanisms in-vivo, they have nevertheless given us some insight into anti-PIESA immunity.
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The ability of humans to mount a rapid anti-PIESA response following an infection has been 

demonstrated in several studies; first by Marsh and Howard (1986) who also showed that 

anti-PIESA agglutinating antibodies are largely-isolate specific and subsequently by others 

(Forsyth, et a l, 1989; Iqbal, et a l, 1993; Reeder, et a l, 1994; Bull, et a l, 1998). These 

antibodies are mainly IgG of the cytophilic subclasses (Marsh and Howard, 1986; Piper, et 

a l, 1999b ), but IgM’s involvement cannot be ruled out. Due to it short half-life, IgM would 

only be detected in studies done immediately following an acute episode and would only be 

only against the infecting parasites.

Observations from antibody elution experiments (Marsh and Howard, 1986) had suggested

that different isolates might express cross-reactive PIESA. However, the isolate-specificity of

anti-PIESA antibodies involved in agglutination was demonstrated in an elegant experiment

by Newbold et a l,(  1992). Using a differential staining technique they demonstrated the lack

of co-agglutination by different field and laboratory isolates to form. The induction of

antibodies during an acute episode to parasites that are apparently not involved in the episode

has also been cited elsewhere as evidence for cross reactivity between PIESA variants (Giha,

et a l, 2000). However, a point to note is that although one PIESA variant might predominate

in wild isolates, often, several other variants may be present, albeit in minor proportions. As

such, antibodies eluted off one isolate may agglutinate a proportion of other apparently

heterologous isolates containing overlapping variants. Second, antigen variation in natural

infections means that even a single infection will eventually result in the stimulation of

multiple specificities. Giha et al, (1999) reported a high correlation in the induction of anti-

PIESA responses to two parasite isolates during a malaria transmission season and

concluded that the isolates were expressing an overlapping repertoire of PIESA. The isolates,

which came from two siblings who were living in the same house and were simultaneously ill

with malaria, were shown to be isogenic with respect to three genetic markers (MSAl,
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MSA2 and GLURP). However, they did not form mixed agglutinates indicating they were 

expressing distinct PIESA. A possible explanation for the correlation is that the isolates were 

variants from a single parental parasite that were being co-transmitted. Transmission in 

Daraweesh in the Sudan where the study was done is low and the transmission season brief 

and may have been insufficient to cause complete disruption of the initial clustering of the 

two variants. The fact that agglutination of the two isolates by adult sera from a remote 

location on the other side of Africa (Ghana), where such co-transmission was not expected, 

showed poor correlation supports this explanation.

A protective role of anti-PIESA antibodies has been suggested by studies in Gambian and

Kenyan children and among Sudanese individuals. In the Gambian study (Marsh, et a l,

1989), the relationship between titres of antibodies to various malaria antigens and risk of

suffering a clinical episode of malaria was determined in a group of children monitored

longitudinally during a transmission season. After correction for potential confounders such

as age, and bed-net usage, only levels of agglutinating antibodies to a randomly selected

wild parasite isolate were found to be associated with protection against an acute malaria

episode. In Kenya, the ability of a sera (index) obtained from children who subsequently

suffered a malaria episode (cases) to agglutinate parasite isolates obtained during the episode

was compared with that of sera from matched control children. The proportion of case index

sera that agglutinated the infecting parasites was significantly lower than that of control sera.

However, both sets of index sera agglutinated a heterologous parasite isolate to the same

extent indicating that children are less likely be infected by parasite against whose PIESA

they already had antibodies. Sera obtained from the cases during the episode agglutinated the

infecting parasites to a higher extend than either the index case or control sera reflecting the

induction of anti-PIESA antibody responses in the cases (Bull, et a l, 1998). In the Sudan, the

risk of having malaria episode was associated with the inability to detect antibodies to the
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surface of a parasite isolate from Ghana by flow cytometry at the beginning of the 

transmission season (Giha, et ah, 2000).

One of the strongest, albeit indirect, piece of evidence that antibodies directed against PIESA 

with a particular binding phenotype can protect against malaria is seen in pregnancy- 

associated malaria. Parasites that cause malaria during pregnancy sequester in the placenta 

mainly (Bray and Sinden, 1979) and have the distinction of binding to chondroitin sulphate A 

(CSA) only but not CD36 (Rogerson, 1995; Chaiyaroj, et a l, 1996; Fried and Duffy, 1996). 

There is a clear correlation between the possession of antibodies that can disrupt the binding 

of placental parasites to CSA, or CSA-expressing syncitiotrophoblast cells and protection 

against malaria during pregnancy. The titres of anti CSA-binding parasites antibodies 

increase with increasing parity and are accompanied by decreasing incidence of pregnancy- 

associated malaria (Fried, et a l, 1998; Maubert, et a l, 1999; Ricke, et a l, 2000).

While non-immune individuals are unable to agglutinate any parasite isolates, individuals

living in malaria endemic areas exhibit increasing capacity to agglutinate a randomly selected

parasite isolate following repeated exposure to malaria (Bull, et a l, 1998). Hence immune

adults can agglutinate a large number of isolates (Marsh and Howard, 1986; Forsyth, et a l,

1989; Iqbal, et a l, 1993; Reeder, et a l, 1994) including those from remote locations and time

(Aguiar, et a l, 1992). It is not clear exactly how such a capacity is acquired but two

possibilities have been raised. This capacity could simply reflect the accumulation of a wide

set of variant specific anti PIESA antibodies over time (Gupta and Day, 1994).

Alternatively, the ability to agglutinate isolates that an individual is unlikely to have

encountered due to the remoteness of their site of origin and time of isolation (Aguiar, et a l,

1992) has been taken as an indication that beyond certain threshold of repeated exposure, a

variant-transcending immunity is acquired. On the other hand, it might suggest that the
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parasites PIESA repertoire is limited. However, even immune adults fail to agglutinate all the 

isolate when tested against a sufficiently large panel (Forsyth, et a l, 1989; Iqbal, et a l,

1993)

Marked seasonal fluctuation in agglutinating antibody has been reported in individuals living 

in an area with seasonal unstable transmission (Giha, et a l, 1998). Individuals who suffered 

an acute malaria episode during the transmission season predominantly acquired new 

specificities to both the infecting parasite isolate and also to other isolates. On the other hand, 

both loss and gain of specificities were observed among individuals who did not did not 

suffer any acute episode during the season. These observations suggest that both clinical and 

sub-clinical infections may contribute in the accumulation of variant specific anti-PIESA 

antibodies. The loss of specificities within a period of four months observed in this study, 

suggests that some anti-PIESA antibody responses are short lived. An interesting question is 

whether such short-lived responses are due to host factors or to the infecting parasites’ 

PIESA phenotype.

The relative rarity of severe malaria cases led to the notion this syndrome was caused by a

restricted set of rare parasite variants. On the contrary. Bull et al (1999, 2000) found that in

fact parasites that caused severe disease were more frequently agglutinated by a panel of sera

than parasites causing mild disease were i.e. they were more common with respect to PIESA.

In addition they also found a negative correlation between the frequency with which a

parasites isolate was agglutinated by a panel of sera from children, and the age of the patient

from whom the isolate was obtained. Similar observations were made in a study in

Daraweesh, although, the authors do not discuss it in their publication. Two isolates from

individuals aged 20 and 32 years old were not agglutinated by any pre-transmission season

sera from 64 individuals compared to over 30% who agglutinated isolates from 10 and 12
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year old individuals. After the transmission season recognition of the first two isolates 

inereased to only 10 and 17 % respectively while recognition of the latter two rose to nearly 

100% (Giha, et a l, 1998). Taken together, these observations have led to the hypothesis that 

there may be a trade off between more functionally efficient (hence virulent) but more 

immunogenic PIESA variant and less immunogenic but also less virulent (more novel) 

variants. In such a scenario. Variants infecting non-immune individual such as children try to 

maximise virulence in order to out-compete other variants while in immune adults, the 

expression of novel PIESA variants to escape immune detection may be more critical to 

parasites’ survival (Bull, et a l, 2000).

Doubts have been raised over the usefulness of PIESA as candidates for a malaria vaccine 

because of the extreme diversity. However, the finding that severe malaria is caused by 

parasites that express common PIESA variants offers some hope that a vaccine against 

PIESA might only need to include a limited number of common variants. Among pregnant 

women, disruption of CSA binding by antibodies was found to be isolate- independent raising 

hopes that designing a vaccine to stimulate antibodies against CSA binding sites of the 

parasite may be feasible (Duffy, et a l, 2001). Finally, in natural infections, responses to 

PIESA might be directed mainly toward variable but non-functional regions of PIESA while 

it might be possible to construct variant-transcending vaccines directed against the more 

conserved functional domains.
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1.6 JUSTIFICATION AND OBJECTIVES

Understanding immunity to malaria is a key pre-requisite for the development of the much- 

needed malaria vaccines. However, despite years of research, immunity to malaria is still 

poorly understood. This is partly because of the inability to distinguish between protective 

and non-protective responses provoked by malaria parasites and partly because longitudinal 

studies required to provide the data to help untangle these questions are difficult and costly to 

set up. There is evidence to suggest that responses directed against the variable antigens on 

the surface of red cells infected with mature stages of malaria parasites (PIESA) may be 

important in the protection against malaria. However, the natural history of these responses is 

poorly documented. There is little data describing the kinetics of antibody responses to 

PIESA following an acute episode of malaria. In addition, it is thought that acquisition of 

immunity against malaria may involve the accumulation of variant-specific antibodies against 

the circulating repertoire of PIESA variants. However, the dynamics of this process are also 

poorly documented and understood. Thus, the objectives of the studies described in this 

thesis were

General objectives.

To Describe the natural history of antibody responses to parasite-induced antigen on the 

surface of malaria-infected red cells.
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Specific objectives

1. To describe the kinetics of antibody responses to PIESA in Kenyan children following an 

acute episode of malaria with respect to the rate, magnitude, persistence and isotype 

profile of the responses.

2. To describe the changes in individuals’ anti-PIESA specificities repertoire over a period 

of one year.

3. To determine if having anti-PIESA antibodies to particular isolates at the beginning of a 

follow-up period is associated with protection against clinical episodes during the follow- 

up period

4. To examine the influence of chronic infections on an individual’s anti-PIESA antibodies 

repertoire and on the protective role of the antibodies.

5. To use the same longitudinal studies to identify other parasite antigens that might be 

targets for protective antibody response.
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CHAPTER 2 

MATERIALS AND METHOD

2.1 STUDY SITE

These studies were carried out at the Wellcome Trust /Kenya Medical Research Laboratories at 

Kilifi District Hospital, 40 kilometres North of Mombasa on the Kenya coast (Fig. 2.1). The 

hospital serves nearly 100,000 people living in two areas separated by an ocean creek. The 

majority of the people belong to the Miji Kenda ethnic group that consists of nine closely related 

subgroups. An area along the coast line to the north of the creek about 40 kilometres long and 10 

kilometres deep was defined in 1991 for demographic surveillance and has been the base for 

several epidemiological, public health, bed-nets and drug intervention research projects (Snow, 

et a l, 1994).

Malaria transmission is perennial with peaks following the main rainy season in April and 

September. The main mosquito vectors are the Anopheles gambiae complex and A. funestus 

(Mbogo, et a l, 1995). Data from a paediatric ward death survey between 1991 and 1995 put the 

yearly malaria-attributable mortality at 1.2 per 1000 in children below 4 years. However, it is 

estimated that twice as many children die at home and the corrected rate is 3.8 children per 1000 

per year (Snow, et a l, 1998a). Although transmission is higher south of the creek (EIR= 60 -  

200) than north of the creek (EIR= 10 -  30), the rate of children admission to hospital with 

severe malaria differs in a somewhat paradoxical manner so that it is higher in the north than in 

the south (25.9 Vs 16.7 per 1000 children under the age of 10 years) (Snow, et a l, 1997).
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2.2 ETHICAL CONSIDERATIONS

The proposal for these studies was reviewed and passed as ethically acceptable by the Kenya 

National Ethic review board. In addition, for each section of the study a fully informed consent 

(appendix II, III) was obtained from adult on their own or their children’s behalf

Fig. 2.1
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A map o f Kenya showing the location o f Kilifi. The insert is a close-up map o f Kilifi district indicating the 

location o f the district hospital and Ngerenya location where the longitudinal studies were carried out.
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2.3 LABORATORY METHODS

Although each section of these studies had a specific design, a number of laboratory techniques 

were common to most of the sections and will therefore be described in this section for later 

reference. The validation of these methods will also be described. The suppliers of all the 

reagents used in these studies are listed in appendix I

Parasite culture 

Culture media

RPMI 1640 supplemented with 37.5 mM HEPES, 20 mM glucose, 100 uM hypoxathine, 2 mM 

glutamine, 25 ug/ml gentamicin sulphate, and adjusted to a pH of 7.2 with NaOH was used for 

cell washing purposes and is referred to here simply as “RPMI”. For parasite culture, this RPMI 

was further supplemented with 10% (v/v) pooled AB serum from malaria non-exposed 

Europeans, and is referred to as complete culture media. Reagents were either supplied sterile or 

sterilised by filtration through a 0.22um nitrocellulose filter.

Field isolates

Field isolates were obtained from children at the outpatient clinic of KDH (mild) or from 

children admitted to KDH with uncomplicated or severe malaria (WHO, 2000). Blood was 

drawn by venepuncture with a gauge 23 needle either from the dorsum of the hand or the ante- 

cubital fossae into a 15ml centrifuge tube containing 5Oui of heparin (final concentration; 10 -  

15ul/ml of blood) and centrifuged at 2000 rpm for 5 minutes to separate plasma. The pellet was
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re-suspended in an equal volume of RPMI and carefully layered on top of 3ml of Lymphoprep in 

a 15ml centrifuge tube. The tube was spun at 4000 rpm for 15 minutes and the supernatant, 

which contained mononuclear cells, removed. To remove granulocytes, the pellet was 

suspending in 70% Plasmagel in RPMI, incubated at 37^C and allowed to sediment by gravity 

for 15 minutes. Granulocytes remained in the supernatant and were removed by aspiration. After 

washing the red cell pellet twice in RPMI, a portion of the cells containing parasites at ring stage 

was immediately cryopreserved in liquid nitrogen while another portion was put into culture.

Laboratory isolates

All the laboratory isolates were cultured from liquid nitrogen cryopreservation. C4, CIO, and A4 

are part of the IT4/25/4 clone tree that was generated by Roberts et al (1992) (Fig. 2.2). ITGIC15 

was also derived from the IT4/25/4 but on a different occasion and was selected for ICAM-1 

binding. These clones were kind gifts from Bob Pinches at the Weatherall Institute of 

Molecular Medicine, Oxford. The parasites were occasionally floated on Plasmagel during 

culturing to select for knobby variants (Pasvol, et a l, 1978).

Figure 2.2
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Cryopreservation and recovery of field and laboratory isolates

Parasites were cryopreserved in glycerolyte. To prepare glycerolyte, 26.6g of Sodium lactate, 

300mg of KCl, and 15.8g of NaH2P0 4  were added to 590g of glycerol and the mixture made up 

to one litre with deionised water. The pH was adjusted to 6.8 using NaOH, the solution filtered 

through a 0.45um filter and stored at 4^C.

To cryopreserve the parasites, an infected cell pellet was obtained from culture by centrifugation, 

and washed twice in RPMI. 1/3 X pellet volume of glycerolyte was added slowly over five 

minutes with continuous agitation and then the tube was left to stand for five minutes. A further 

3 X pellet volume of glycerolyte was added in the same manner, as was the first. 1 ml aliquots of 

the suspension were put into 1.2ml cryovials, labeled, and stored in a -80°C freezer overnight 

before being transferred to a liquid nitrogen tank for long-term preservation.

Thawing of the frozen stabilates

The parasites were thawed rapidly by enclosing the cryo-tube in a fist. The stabilates was then 

transferred to a 15 or 50 ml centrifuge tube depending on volume. Recovery was by a three step 

restoration of isotonicity, beginning with 12% saline added slowly over 5 minutes to a 1:5 saline 

to sample volume ratio. After incubation for five minutes at room temperature, 5 volume of 1.8% 

saline was added gradually. The sample was then centrifuged at 1800 rpm. A final wash in 5 

volumes of 0.9% saline/ 0.2% glucose solution was done before suspending the pellet in RPMI.
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Cultivation of parasites

Field isolates were either cultured freshly immediately they were obtained from the patient or 

recovered from cryopreservation, while all the laboratory clones were recovered from 

cryopreservation and maintained by diluting with fresh O positive red blood cells from a 

volunteer. Culture was according to standard methods (Trager and Jensen, 1976) at 37 ^C in 

complete culture media. The amount of complete culture media required for culturing a given 

volume of parasite was given by the formula:

Packed cell volumes (ml) x Parasitaemia (%)x 5 = volume o f culture media required (ml)

The cultures were gassed with a 3% CO2, 5% O2, 92% N2 mixture. When necessary, 

Aphidocolin (1.5ug/ml) was added to the culture to synchronise growth by arresting 

development at the mature schizont stage (Inselburg and Banyal, 1984). This treatment does not 

affect the parasite agglutination phenotype (Bull, et al., 1998).

Determination of Parasitaemia

The percentage of cells infected was assessed by microscopy. A 200ul aliquot of culture was 

pipetted into a 0.5ul Eppendorf tube using a Gilsons pipette and centrifuged to obtain a cell 

pellet. The pellet was then pipetted on to a clean glass slide and a thin film prepared by the 

standard technique of spreading the cells with the edge of another slide that is inclined at a 45°. 

The smear was fixed with methanol and staining done for 10 minutes with 10% giemsa in 

phosphate buffer, pH 7.2. Excess stain was then washed off with tap water and the slides dried 

in either air or using a blow dryer. 1000 cells were counted through a lOOx objective lens under
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oil immersion and the number of cells infected by each stage (rings, mature trophozoites and 

schizonts and gametocytes) expressed as a percent.

In the longitudinal studies, where the parasitaemia was too low to be effectively detected by thin 

smears, a thick smear was prepared. To do this, a small volume of blood was pipetted on a glass 

slide and spread in to circular smear with the comer of another slide. The smear was then left to 

dry for at least an hour before being carefully overlaid with 10% giemsa stain in buffer (pH 7.2). 

The slides were stained for 10 minutes, washed, dried, and examined through a lOOx objective 

lens under oil immersion. Parasites were expressed relative to 200 white blood cells (WBC) and 

then converted to parasite per micro litre of blood by the formula below:

Patients WBC count (per ul) ^ parasite count/200

Agglutination assays

The method of Marsh et al (1986) was used with some modifications. This method depends on 

the ability of antibodies against the malaria parasite-induced erythrocyte surface antigens 

(PIESA) to agglutinate red cells infected by mature malaria parasites in a variant-specific 

manner. The agglutinated cells are visualized under low power microscopy against a dark 

background by staining them with a fluorescent dye such as acridine orange or ethidium bromide 

and illuminating them with UV light of the appropriate wavelength (Fig. 2.3).

Parasite isolates were assayed when the majority of parasites in a culture were in late trophozoite 

or schizont stage. A red cell pellet was obtained from the culture by centrifugation at 1800rpm. 

The cells were washed thrice in RPMI and the parasitaemia adjusted to between 1 -  5% by
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adding an appropriate volume of uninfected cells. A 5% haematocrit suspension of the 

parasitised red blood cells in RPMI was prepared and ethidium bromide added to a final 

concentration of lOug/ml. lOul of the suspension was pipetted into 0.5ul Eppendorf tubes or into 

a U-bottomed 96-well. To avoid the effect of drying, the wells in outmost rows and columns on 

the plate were not used instead 25 ul of plain RPMI was pipetted into them. 2.5 ul of test serum 

was then added into the tube or microtitre plate well and the mixture agitated continuously on a 

vertical rotator at 25 rpm for 1 hour at room temperature.

Initially, the reactions were examined as wet smears. To prepare these, the reaction mixture was 

pipetted onto a clean microscope slide and covered with a petroleum jelly-rimrned glass slip to 

prevent drying. The slides were then examined by microscopy under UV light at xlO objective. 

Agglutinates were sized relative to a 0.1 mm graticule and a score assigned as follows an 

agglutinates of 3-5 cells was assigned a score of one; while agglutinates that were -1/8 graticule 

(5-10 cells) were assigned a score of 2; -1/4 graticule (11-30 cells) = 4; -  V2 graticule (31-70 

cells)= 8 and -  1 graticule (>71 cells)=16. The total score for each slide was calculated by 

multiplying the number of agglutinates of each size by the numeric score assigned to that size 

and then summing up the scores for the five sizes. Checkerboards based on the total score were 

constructed to facilitate visual comparison of scores.
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Figure 2.3

Un-infected red cells

Un-aggludnated 
infected red cell

Agglutinates

An example o f agglutinates stained with acridine orange and illuminated with UV light to contrast the 

infect cells with un-infected cells.

Modification of agglutination assays to allow longer storage of slides

Because wet smears can only be maintained for a few hours before the parasites begin showing 

sign of deterioration, it would have been impossible to carry out experiments that involved a 

large number of reactions or required simultaneous reading of slides prepared at different times. 

Therefore, a modification of the assay was made to facilitate longer storage of the slides. The 

reactions were carried out as before except that the fluorescent dye was not added during the 

preparation of the reaction mixture. At the end of the rotation, instead of making wet smears, the 

mixture was spread out onto a microscope slide into a circular thin smear of about 18mm 

diameter and lefl; to dry in air before fixing with methanol for about 30 seconds, these slides 

could then be stored for later reading. This method compares well with the use of wet smears.



could then be stored for later reading. This method compares well with the use of wet smears, 

while allowing slides to be stored for later simultaneous blinded assessment. To read the dry 

smears, 12.5ul of acridine orange (10 ug/ml) were placed on an 18 x 18 mm cover slip and the 

agglutination slide inverted on it to stain the slide. The entire smear was examined 

microscopically in a manner similar to the wet smears.

Flow cytometry

An increasingly larger number of publications are reporting the use of flow cytometry as a 

method of exploring the expression of and immunity to PIESA (Piper, et al., 1999b; Urban, et 

a l, 1999; Giha, et a l, 2000). There are a number of reasons why flow cytometry has been 

adapted as a method of studying responses to PIESA. First, it is a more rapid and less labour 

intensive method and hence a larger number of samples can be assayed at a time. Second, it is 

less subjective than agglutination assays hence results can be better standardized. Third, it is 

difficult to assess the isotype of antibodies that bind to the surface of infected cells except by 

flow cytometry. Fourth, flow cytometry yields data that are more easily analysed with standard 

mathematical techniques than data from agglutination assays. However, a word of caution here 

is that the two assays may not necessarily measure exactly the same parameters although one 

would expect them to overlap to some extent. It is possible that not all antibodies bound to the 

cell surface, which are otherwise detected on a flow cytometer, mediate agglutination (Table 2.4)
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The assay

A pellet of red cells infected by mature parasite stages was obtained from culture by 

centrifugation at ISOOrpm. The pellet was washed thrice in RPMI, and then re-suspended at 1% 

haematocrit in 0.1% Bovine serum albumin/Phosphate buffer saline (0.1%BSA/PBS). lOul of 

the infected cell suspension was placed in a well of a round-bottomed 96-well plate and 2.5ul of 

test serum added to give a final test serum dilution of 1:5. The reaction mixture was incubated 

for 30 minutes at room temperature following which the cells were washed thrice with 0.1% 

BSA/PBS centrifuging at 1500 rpm between each wash to remove the wash medium. After 

washing, the cells were re-suspended in 50 ul of 0.1% BS A/PBS containing lOug/ml ethidium 

bromide and a 1:50 dilution of FITC-coupled goat antibodies directed against either human IgM, 

IgG or the four IgG isotypes (IgGl, 2,3 and 4) (Binding Site, UK) depending on assay. After 

incubation for another 30 minutes, the cells were washed thrice and at least 1000 infected 

erythrocytes counted on an EPIC/XL flow cytometer (Coulter-electronics, UK).

The formula by which the percentage of infected cells staining positive for bound antibodies 

(FITC fluorescence) and their mean fluorescent intensity is given along with figure 2.4.



Figure 2.4
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antibodies

An example o f a flow cytometer output graph showing the four regions into which cells may be sorted.

The mean fluorescent intensity (MFI) is given as a ratio

(MFIur X COUNTur) /  (MFIul X COUNTul)

(MFIlr X C O U N T lr) /  (MFIll X COUNTll)

and the percent infected cell positive for FITC 

COUNTur /(COUNTur +COUNTul)

COUNTlr/(COUNTlr +COUNTll)

X 100

Where COUNT is the number o f cells in the subscripted quadrant.
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2.4 VALIDATION OF THE LABORATORY METHODS 

Validation of the agglutination scoring method. (Fig. 2.5)

In order to assess the reproducibility of the method used to score agglutination, A4 parasites 

were assayed against a panel of 20 children plasma. Duplicate dry agglutination smears were 

prepared from each reaction, blinded and scored. The difference between the pair scores was 

tested for significance using a paired t-test. Bias was assessed by the method o f Altman, 1991. 

In this method, a scatter plot of the difference between the pair scores and the average o f the 

pair is constructed. Symmetry of the plot around X-axis (zero difference) indicates a lack of 

systematic bias. The duplicate scores did not differ significantly (P=0.960) and the scatter plot 

revealed a high level of correlation (r = 0.998) between the scores. The plot of the difference 

between the pairs versus the average of the pair was symmetrical around zero indicating that 

there was no systematic bias for one set of scores.

Figure 2.5
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Effects of repeated freezing and thawing plasma on agglutination antibodies. 

(Fig. 2.6)

Freezing of plasma is a standard storage procedure in many field studies. However, it is widely 

believed that repeated freezing and thawing of plasma may be detrimental to antibodies although 

I could not find published data supporting this notion. Since my studies involved the storage of 

plasma samples at -20^ C, it was necessary for me to establish if, and how much, repeated 

freezing and thawing of the samples could be adversely affect the antibodies present in them.

Serum samples obtained from two immune adults in an earlier study were selected on basis of 

their ability to agglutinate the A4 parasites. The plasma was aliquoted and frozen at -20^ C. 

Subsequently, the samples were subjected to either 2, 4, 8 or 16 freeze-thawing cycles before 

assessing their ability to agglutinate A4 parasites. The samples were allowed about half an hour 

of thawing by which time they achieved room temperature and then immediately put back into 

the freezer. At least a 2-hour lapse was allowed before the next thaw. Each sample was assayed 

at 1:5, 1:10, 1:20, 1:40, and 1:80 dilutions. The titre of agglutinating antibodies in the sample 

was taken as the highest dilution at which agglutinates were still evident. A checkerboard was 

constructed to allow visual assessment of the scores. Before the first freeze-thaw cycle, the 

antibodies in the samples titred out at a 1:40 dilution. After the first freeze-thaw cycle, a drop 

was observed in the titres (1:20) after which they remained constant even after another 15 freeze- 

thaw cycles.
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Figure 2.6
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The effect of repeated freezing and thawing of serum on agglutination. 0 -4  indicate increasing 
degrees of agglutination where 0 is negative.

Inter-assay variation. (Fig. 2.7)

Profiles of agglutination of 6 wild and one laboratory isolate (A4) by a panel of 8 children 

plasma were compared in duplicate experiments that were separated by an hour’s interval. 

Pooled plasma from malaria non-immune Europeans and RPMI were included in order to assess 

non-specific agglutination. Aphidocolin was used to arrest parasite growth at the schizont stage 

and prevent possible PIESA changes during the intervening hour. Kappa-statistic was used 

determine if the concordance between the experiments was significantly different from the level 

of concordance that could be observed if the data was generated randomly (Kappa-statistic 

ranges from 0 when there is no agreement to 1 when the agreement between sets of outcomes 

from duplicate experiments is perfect).
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While the agglutination profiles of 2 isolates (1433 and 1489) did not show any variations in the 

duplicate experiments, the profiles of the other 5 showed variations involving gain or loss of 

positivity. Overall, 82% concordance was observed between the experiments (expected 

concordance if the variation was random = 56%, Kappa=0.602, P<0.001). The variation was not 

biased towards either of the experiments, so that while isolates A4, 1424, 1542, and 3983 lost 

positivity with some plasma in the second experiment, isolate 3950 appear to have acquired 

novel positivity. However, within the isolates, the gain or loss of positivity tended to be biased 

towards one experiment. Except for plasma 10 which showed a slightly higher tendency to react 

positively with parasites in the first but not the second experiment, reactions with the rest of the 

plasma were not biased for either experiment. Isolate 3893 showed non-specific agglutination in 

non-immune plasma in the first experiment but subsequently lost it in the second. It was in this 

isolate also that the highest variation was observed with all the positive reactions (5 out of 10 

plasma) in the first experiment becoming negative in the second.

Figure 2.7

Agglutination profiles of seven isolates 
against a panel o f 10 plasmas from 
duplicate experiments (a and b). Eu - 

Non-immune European plasma. The 
scores are represented on a semi- 
quantitative scale of increasing 
intensity from negative to 4.

iso la te s

a4 1424 1433

B

j - n e g a t iv e 3=2 =3 1=4
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Correlation between antibody titres and flow cytometry parameters. (Fig 2.8)

Two parameters are considered when using flow cytometry: 1. The percentage of infected cells 

that have antibodies bound to their surface as indicated by positive FITC staining. This reflects 

both the proportion of infected cell expressing PIESA variants against which there are antibodies 

present in the test plasma and the titres of those antibodies. 2. the mean fluorescent intensity 

(MFI) of the positive cells which potentially could reflect three things: a) the amount of antibody 

bound to the cells and therefore a proxy measure for titre; b) the affinity of the antibodies 

binding to the cell surface and c) the amount of PIESA being expressed by the cells. I assessed 

the relationship between both of these parameters and titres of anti-PIESA antibody in plasma 

samples in order to facilitate the interpretation of our flow cytometry data.

Serial dilution of plasma from a malaria immune adult was tested for antibodies against A4 and a 

wild isolate 3353. The A4 was grown in culture and floated on Plasmagel to concentrate PIESA- 

expressing parasites. The culture was then diluted down to a 2% parasitaemia with fresh O 

positive red cells and grown for one generation before the assay was carried out. Isolate 3353 

was recovered from cryopreservation and cultured overnight before being diluted to a 5% 

parasitaemia with fresh group O red blood cells and left to grow to maturity. Both isolates were 

first tested for agglutination in the test serum and shown to be positive. The test plasma was 

diluted in AB pooled plasma from malaria non-immune European adults in the following ratios - 

1:5, 1:25, 1:50, 1:100, 1:200, 1:400, 1:800, and 1:1600. The pooled European sera were also 

used as a negative control.
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Figure 2.8
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The parasites were assayed when the majority of parasites were in the mature stage. 

Agglutination assays were first done to confirm that the parasites were still expressing PIESA 

and that the serum selected had antibodies against the PIESA of the isolates being tested. The 

test plasma agglutinated both isolates although to a different extent. Large three-dimensional 

agglutinates were observed with A4 while few and smaller isolates were observed with 3353.

Antibodies against both isolates titered out at a dilution of 1:100. Below, this dilution, titre was 

highly correlated with percentage of cells positive for FITC and also the MFI o f the cells 

(R>0.8, P>0.001) except in the case of A4 where the percentage of cells positive and titres were 

less
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well correlated (r=0.65). It was observed that at the lowest dilution (1:5) the percentage of A4 

cells positive was lower than the correlation model predicted (Fig. 2.8). It was also observed that 

the parasitaemia detected in this sample was significantly (Z score P = 0.001) lower than in the 

rest of the samples (1.78 Vs 5.73 +0.72 -mean + SD). Examination of a sample of the A4 1:5 

dilution reaction mixture by microscopy revealed that some of the infected cells had 

agglutinated.

The use of cryopreserved schizonts in agglutination assays and flow cytometry

Because the mature parasites that express PIESA sequester in capillary beds and are absent in the 

peripheral circulation, parasite samples for studies on PIESA are obtained and cryopreserved as 

rings and cultured to maturity when required. However, this has limitations as some 

cryopreserved isolates do not grow in culture upon thawing (Forsyth, et a l, 1989; Reeder, et a l,

1994) and among those that do, a substantial proportion of parasites may be lost during 

cryopreservation and thawing. Thus, recovery from cryopreservation could select a parasite 

subpopulation with altered characteristics (Jadin, et a l, 1976). Second, variation in the times that 

recovered rings from different isolates take to mature makes planning experiments involving 

simultaneous assaying of many isolates difficult. I therefore used two approaches to examine 

whether mature P. falciparum stages grown from fresh blood and cryopreserved in glycerolyte 

are suitable for determining PIESA phenotype by agglutination and by flow cytometry.

First, I used mixed agglutination to determine if cryopreservation of schizonts affected the 

variant-specificity of agglutination assays and second, I assessed the effect of cryopreservation
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on the reactivity profiles of 9 isolates against a panel of 22 children sera using agglutination and 

flow cytometry. Parasite culture, cryopreservation, thawing agglutination assays, and flow 

cytometry were carried out as per the protocols described earlier on.

Recovery of cryopreserved mature parasites. (Table 2.1)

Recovery is given as the parasitaemia after cryopreservation expressed as a percentage of the 

parasitaemia before cryopreservation. Parasitaemia was determined by flow cytometry. A pellet 

of cells was incubated for 10 minutes with ethidium bromide, washed thrice in 1% BSA/PBS 

buffer and run through the flow cytometer. 100,000 cells were counted. The difference between 

the mean parasitaemia for the fresh and recovered sample was assessed for significance using a 

paired t-test. Parasitaemia was higher, although not significantly (P=0.412) in the fresh samples 

(2.83%+ 2.12) than in the cryopreserved ones (1.83% + 1.5) (mean + 95% C.I.). The mean 

recovery rate for the cryopreserved parasites was 84.56% + 24.23. Despite appearing to be 

morphologically intact, the recovered parasites failed to grow in culture and turned pyknotic after 

24 hours.
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Table 2.1

Isolate fresh Cryo % recovered

7996 0.87 0.90 103.45
va12 0.79 0.63 79.75
va13 1.46 1.41 96.58
va14 3.97 1.72 43.32
va9 0.47 0.58 123.40
vaS 2.27 3.00 132.16
va8 3.02 1.40 46.36
va7 9.78 5.03 51.43

mean 2.83 1.83 84.56
sd 3.06 1.50 34.96
95% Cl 2.12 1.04 24.23

P (ttest) 0.4124

Recovery o f schizonts from  cryopreservation. Fresh is percentage o f red cells parasitised at 

time o f cryopreservation while cryo is the parasitaemia o f the recovered sample. % recovered 

= cryo /fresh  X 100.

The effect of cryopreservation on the degree of mixed agglutination between laboratory 

isolates. (Table 2.2)

The ratesof mixed agglutination among fresh (FS) and cryopreserved schizonts (CS) of three 

laboratory isolates; A4, CIO, and C4 (Fig. 2.2) were compared. The method of Newbold et al 

(1992) was used. Briefly, the isolates were grown to maturity diluted to an equal parasitaemia (3 

- 4%) and an aliquot of each cryopreserved. The remaining cells from each culture were divided
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into two portions and one portion stained with DAPI (1 ug/ml) and the other with ethidium 

bromide (lOug /ml) for 5 minutes. The cells were then washed thrice with RPMI and re

suspended at 5% haematocrit. 5ul of cell suspension of one isolate was mixed with 5ul of cell 

suspension from a second isolate that had been stained with a different dye. The resulting lOul 

of suspension were mixed with 2.5ul of immune adult serum and rotated on a wheel for an hour 

to facilitate agglutination. Wet smears were then prepared and blinded before scoring the 

reactions. 100 agglutinates were considered and the proportion of agglutinates that contained 

cells stained by both dyes taken as the degree of mixed agglutination. The assays were then 

repeated using cryopreserved schizonts and the degree of mixed agglutination compared with 

that observed in among fresh schizonts.

Table 2.2

Fresh schizonts Cryopreserved schizonts

Isolate Pairs stain Single colour mixed Single colour mixed

A4 EtBr - A4DAPI 0 100 2 98

CIO EtBr - CIO DAPI 0 100 , 0 100

C4 EtBr - C4 DAPI 2 98 0 100

A4 EtBr - C4 DAPI 95 5 78 22

A4 DAPI - C4 EtBr 90 10 88 12

CIO EtBr - C4 DAPI 85 15 92 8

CIO DAPI - C4 EtBr 87 13 86 14

The Degree of mixed agglutination among fresh and cryopreserved schizonts o f three 

laboratory isolates.
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The three isolates exhibited between 5% and 13% mixed agglutination. However, CIO and A4 

exhibited over 40% mixed agglutination and the combination was not used in the assays. No 

changes were observed in the level of mixed agglutination when cryopreserved schizonts were 

used in the assays except in one combination A4 (EtBr) - C4 (DAPI) where a slight increase 

occurred. However, the cryopreserved schizonts from the same isolates that had been stained in a 

reverse manner A4 (DAPI) - C4 (EtBr) did not exhibit increased mixed agglutination.

Agglutination profiles of fresh and cryopreserved schizonts. (Fig. 2.9)

Reactivity profiles of fresh and cryopreserved schizonts from 9 isolates with a panel of 22 

children plasmas were compared. The isolates showed distinct agglutination profiles with some 

(val3) reacting positively with the majority of the plasmas while others (va5) were positive with 

just a few. T9/96, an isolate that does not express PfEMPl did not agglutinate in any of the 

plasmas. Only va5 and A4 retained the same agglutination profiles in FS and CS while the rest of 

the isolates showed some degree of variation Although variations involving decrease in degree 

of positivity were observed, here I have mainly considered those variations that involved 

complete loss or the gain of novel positivity. A good level of concordance was observed in 

agglutination of schizonts from the two sources (concordance = 86.96%, expected concordance = 

60.72%, Kappa = 0.667, P<0.001). While a predominant loss of positivity was observed in 

val3 and va8 following cryopreservation, the other isolates exhibited a less biased variation with 

both gain and loss of positivity occurring. Non-specific agglutination by non-immune plasma 

was observed in FS of va7, va8, and val2 but not in the CS. None of the plasma showed a bias 

towards agglutinating schizonts from either sources.
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Figure 2.9
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Detection of antibodies bound to the surface of fresh and cryopreserved schizonts by flow 

cytometry. (Table 2.3 & Fig. 2.10)

Antibody binding to the cells surface was assessed in two ways; the proportion of infected cells 

that were positive, and the mean fluorescent intensity (MFI) which is a proxy measure of the 

amount of antibody binding to each cell. For each isolate, the difference in percentage of 

infected FS or CS positive for surface FITC staining or in their MFI was assessed for 

significance using a paired t-test. All the paired data was then pooled, log transformed and the 

difference between FS and CS plotted against the average of the pair, (FS+CS)/2. Table 2.3 

gives a summary of the flow cytometry data. The mean percentages of infected cells positive 

for antibody binding was greater in FS of isolates; va5, va6,va7 and val2 and in the CS of 

isolates va8, val3, val4 but the differences were not significant.

Figure. 2.10
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A strong correlation was observed between the paired data. On the other hand, mean MFI was 

consistently higher in FS than in CS in all the isolates, the difference being significant (P<0.05). 

The plots in figure 2.10 shows that the difference between percentage of FS and CS positive is 

symmetrical about zero thus there is no systematic bias toward either set of cells while the plot of 

MFI differences is biased towards FS.

Table 2.3

% cells positive MFI

Mean (Range) P *Corr. Coeff. mean P *Corr. Coeff.

va5 FS 4.12 (0--30) 100.9

CS 1.51 (0-- 9) 0.103 0.877 26.1 0.006 0.521

va6 FS 2.91 (0--14) 111.1

CS 273 (0--18) 0.318 0.895 28.21 0.443 0.443

va7 FS 3.12 (0--21) 42.0

CS 1.73 (0--21) 0.219 0.857 11.3 0.022 0.835

va8 FS 4.23 (0--29) 77.5

CS 7.13 (0--53) 0.228 0.950 24.6 0.002 0.849

val2 FS 8.36 (0--21) 102.4

CS 2.91 (0--26) 0.385 0.926 94.2 0.530 0.782

val3 FS 4.65 (0--14) 95.7

CS 5.24 (0--15) 0.375 0.702 30.9 0.000 0.600

val4 FS 2.29 (0- 14) 337

CS 2.70 (0 - 15) 0.260 0.791 27.0 0.556 0.017

Comparison of mean percentage cells positive and MFI of FS and CS of various isolates reacted 
with a panel o f 22 children plasma samples. The P - paired t test o f the difference between the 
means. * Coefficient of the correlation between reactivity o f CS and FS to the plasma panel.

103



Correlation between Flow cytometry and agglutination (Table 2.4)

Each isolates’ flow cytometry data from both fresh and cryopreserved schizont were pooled and 

assessed for correlation with pooled agglutination scores (44 data pairs). The level of correlation 

varied among the isolates but agglutination correlated better with percent cells positive than with 

MIF and the correlation was significant in all instances. Between themselves, the two flow 

cytometry parameters were only moderately correlated (r  ̂= 0.588).

Table 2. 4

Isolate Agglu. Vs % cells positive Agglu. Vs MFI

Corr. Coeff. P value Corr. Coeff. P value

VaS 0.683 >0.001 0.506 0.001

Va6 0.722 >0.001 0.303 0.045

Va7 0.553 >0.001 0.384 0.100

VaS 0.800 >0.001 0.532 >0.001

Val2 0.410 0.004 -0.050 NS

Val3 0.443 0.003 0.123 NS

Val4 0.565 0.001 0.128 NS

The correlation between percent of cell positive on flow cytometer, MFI and agglutination 

(agglu). n =44 pairs per isolate. P values for the coefficients are given in brackets. NS  -  not 

significant.
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2.5 DISCUSSION

A number of experiments were conducted to validate the laboratory methods that were to be 

used in these studies. This was necessary in order to know the optimum conditions for the assay 

and the level of inherent assay variation expected. First, I assessed the reproducibility of the 

scoring method that was used in the agglutination assays. Scoring agglutination assays is 

inherently subjective and might be expected to be prone to poor reproducibility, especially when 

a scale that is more complex than a simple binary negative/positive scale is used. However, I 

observed good agreement between scores of duplicate smears prepared from the same reaction 

tube and no systematic bias indicating that the method of scoring was highly reproducible.

I examined the widely held belief that repeated freezing and thawing could affect the 

concentration of antibody in plasma and serum samples. Plasma samples were subjected to 

between 2 and 16 freeze-thaw cycles and the levels of agglutinating antibodies in the samples 

assessed. The first freezing-thaw cycle resulted in a two-fold decrease in antibody levels in all 

the samples, subsequent cycles did not have any effect. One possibility is that some antibodies 

sedimented out of the plasma along with other plasma protein that were precipitated following 

the first freezing cycle. These results notwithstanding, the plasma samples used in these studies 

were aliquoted into small volumes each sufficient for only a few assays in order to minimise 

number of freeze-thaw cycles that each sample was subjected to. In addition, fresh and frozen 

samples were not used in the same assay.

Having established that the scoring method I intended to use for these studies was reproducible 

and that freezing-thawing plasma did not affect the levels of antibodies in my samples
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significantly, I went on to explore the level of inter-assay variation that is expected when using 

fresh schizonts in agglutination assays. The modification of the assay to using dry agglutination 

smears, which unlike wet preparations can be stored for a long time, allowed the simultaneous 

reading of slides from assays done at different times. Duplicate experiments that were separated 

by an hour were done and the reactions scored blind. Agglutination by a panel of plasma of all 

but two isolates varied between the two experiments. While slight changes in assay parameters 

and scoring could explain minor variations, the larger variations are harder to explain. Isolate 

3893 exhibited non-specific agglutination in non-immune European serum in the first but not the 

second experiment. Agglutination of this isolate was also lost in 4 other plasmas. It seems likely 

that the agglutination observed in the other plasmas initially was also non-specific and may be 

weaker and more prone to variation than specific antibody-mediated agglutination. Whatever the 

underlying cause, this experiment indicates that agglutination assays are inherently prone to a 

degree inter-assay variation and is consistent with previous reports by others (Aguiar, et ah, 

1992; Reeder, et ah, 1994; Bull, et a l, 1999).

Because the mature parasites that express PIESA sequester in capillary beds and are therefore 

absent in the peripheral circulation, parasite samples for studies on PIESA are obtained and 

cryopreserved as rings and cultured to maturity when required. However, this has limitations as 

some cryopreserved isolates do not grow in culture upon thawing (Forsyth et al, 1989; Reeder et 

al, 1994; personal obs. ) and among those that do, a substantial proportion of parasites may be 

lost during cryopreservation and thawing. Thus, recovery from cryopreservation could select a 

parasite subpopulation with altered characteristics (Jadin, et a l, 1976). Second, variation in the 

times that recovered rings from different isolates mature makes planning for experiments
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involving simultaneous assaying of many isolates difficult. I observed that parasites cultured 

fresh from patients tend to grow well in culture for at least one generation and therefore explored 

the possibility of using parasites grown in fresh blood and cryopreserved as mature parasites in 

agglutination assays and flow cytometry.

I was able to recover up to 83% of the cryopreserved schizonts in contrast to previous reports of 

the preferential recovery from cryopreservation of rings over mature parasites (Diggs, et ah, 

1977; Wilson, et a l, 1977; Margos, et a l, 1992). I examined the effect of cryopreservation on 

PIESA phenotype in two ways. First, I used the mixed agglutination technique to determine if 

the variant specificity of the parasite antigens involved in agglutination was retained or lost. 

Although the three laboratory isolates used for the experiments are part of the same IT/4/25/4 

clone tree, they do not exhibit mixed agglutination, indicating that the targets of agglutinating 

antibodies on them vary and also underlining the variant-specificity of agglutination assays. The 

observation that cryopreservation of these isolates did not result in increased mixed agglutination 

between them is an indication that the variant specificity of their PIESA was unaltered. In 

addition, this also indicates that no novel infected erythrocyte surface antigens that might be 

conserved across the isolates were revealed after cryopreservation.

Second, I used an alternative approach to further confirm the observations above. I assessed the 

effect of cryopreservation on the flow cytometry and agglutination reactivity of 7 and 9 

isolates respectively with 22 plasma samples. Overall, the variations in agglutination profiles of 

a panel the isolates following cryopreservation was similar to those observed in the inter-assay 

experiment and could be explained thus. No systematic bias in the agglutination of schizonts
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from either of the sources was observed. The loss of non-specific agglutination following 

cryopreservation could have contributed to variations in the agglutination profiles of some 

isolates (va7, va8, val2 and 13)

The lower parasitaemia in CS compared to the corresponding fresh samples indicates that some 

parasites may have been lost during cryopreservation. However, the lack of significant alteration 

in the proportion of infected cells in each isolate reacting positively with each of the test plasmas 

on the flow cytometer before and after cryopreservation suggests that the overall population 

constitution of each isolate was not altered. The decreased MFI in CS suggests that some degree 

of cell membrane alteration occurred on the remaining cells affecting the amount of antibody that 

bound to the cell surface cytometer assay. Both temporary and permanent damage in red cell 

membrane ultra-structure following cryopreservation has been reported (Diggs, et al., 1977) As 

such, caution needs to be exercised when using CS for flow cytometry if MFI is the parameter 

of interest. The source of schizonts in each section of this study is indicated in the description of 

the experimental design. Failure to grow in culture confirms the schizonts suffered irreversible 

damage during cryopreservation. The use of different freezing protocols to try to improve 

viability of CS (Margos, et al., 1992) will be explored in future.

Taken together these data suggests that cryopreservation does not affect the variant specificity of 

PIESA and as a result, the agglutination phenotype of malaria parasites cryopreserved as 

schizonts is not altered. However, there may be some alterations on the infected cell surface that 

could result in reduced surface immunofluorescence. As such, CS could be suitable for
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determining PIESA phenotype by agglutination and flow cytometer when percent cell positive is 

the parameter of interest but caution should be exercised where MFI is the parameter of interest.

In order to facilitate the interpretation of flow cytometry results, I assessed the relationship 

between both MFI and percentage of infected cells staining positive with FITC with antibody 

titres. Because antibodies against the test isolates titred out by the 4̂  ̂ dilution (1:100) of the 

plasma, the calculation for correlation was based on a few points. Nevertheless, within this 

dilution range, a strong correlation was observed between both flow cytometry parameters and 

antibody titres. However, the percentage of A4 cells positives was less well correlated with titre 

than MFI was and the reason appears to be a dip in the parasitaemia detected in the 1:5 serum 

dilution reaction sample. Microscopic examination of this sample revealed agglutination of the 

parasites, which would explain the drop in the apparent parasitaemia. It seems likely that 

agglutinates might interfere with flow cytometry if parasites are assayed at a high parasitaemia. 

Therefore, subsequent assays were done with parasite samples at a lower parasitaemia. In view 

of these results, either of the two flow cytometer parameters could be taken as proxy measures 

for titre.

Finally, I also explored the relationship between data from flow cytometry and agglutination 

assays. Although a level of overlap between two assays is expected, variations could arise 

because of differences in the sensitivity and specificity of the two methods. Furthermore, whilst 

all the antibodies leading to agglutination ought in theory to be detectable by flow cytometry, the 

reverse does not follow, since not all specificities may have the same capacity to cause 

agglutination and surface fluorescence has been reported on schizont infect cells that failed to
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agglutinate (Barnwell, et a l, 1983). The correlation between the parameters varied between 

isolates although on whole agglutination correlated better with percent cell positive than MFI. 

This is not surprising as the method of scoring agglutination used here estimated the total 

number of cells that were agglutinated and were therefore a subset of all the cells that have 

antibodies on their surface. MFI, which is potentially an indicator of how much antibody is 

bound to the cell surface, was less well correlated with agglutination. It is possible there is a 

minimum threshold of amount of antibody surface binding required to maintain stable 

agglutinates beyond which any increase, though resulting in increased MFI, will not affect 

agglutination levels. However, such a threshold was not evident in these data.
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2.6 LONGITUDINAL STUDIES.

Two longitudinal study frameworks were used in the work described in this thesis.

Kinetics of anti-PIESA responses (chapters).

For this part of the studies, children who had a primary diagnosis of malaria but who did not 

fulfill the WHO (2000) criteria for severe malaria were recruited during admission to the 

paediatric ward of Kilifi District Hospital. Children who had a haemoglobin level below 4g/dl 

and were therefore likely to be receive a blood transfusion during their stay in hospital were 

excluded from the study

A 2-3 ml blood sample was obtained from the child by venepuncture on the dorsum of the hand 

or the ante-cubital fossae upon a written consent from the accompanying guardian. The guardian 

was then given a card indicating the date they were requested to bring the child back for 

convalescent sample collection

Children whose condition subsequently deteriorated to encompass the criteria for severe malaria 

or who received a blood transfusion were excluded from the study

The study was carried out in two phases, in the first phase, (July 1997 -  October 1997) 

convalescent samples were obtained 1, 2, 3, and 6 weeks after treatment while in the second 

phase (July 1998- January 1999) they were obtained 1, 2, 3, 6, 9 and 12 week after treatment.
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During the convalescent visits, the children were examined by a clinician, laboratory tests 

including a malaria slide done and appropriate treatment given for any complaints.

Children who failed to turn up within two days of the appointed day were followed up at home 

and were considered lost to follow-up if no samples could be obtained at two consecutive time 

points.

The dynamics and protective role of anti-PIESA responses

As mentioned in the declaration, these studies were conducted within a larger longitudinal study 

framework that was designed to look at the epidemiology of mild malaria in Kilifi over a period 

of two years. Both the principal investigators in the mild malaria study and I were equally 

involved in the setting up of the longitudinal study framework.

Study population and subject selection

The studies were carried out in Ngerenya location that is part of the Northern study area as 

indicated on the map in the methods sections (Fig. 2.1). Re- enumeration of all the people 

residing in the area was done to update the census list before the selection of study subjects. 40 

households were randomly selected from a map drawn during the setting up of the study area in 

1992 (Snow, et al., 1994). In total about 540 individuals; about half of who were children below 

the age of 10 years were included in the study.
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Informing the target population of the study plans and consenting for the study.

Information concerning the study was passed on to the target community in two stages. Before 

beginning the recruitment drive, we held meetings with the administrative officials and 

community leaders of Ngerenya location, informed them of our intentions to carry out the 

studies, and explained the details of the studies. Next, we held similar meetings with parents, 

teachers, and pupils in schools around the location. During the recruitment process, a team of 

trained field workers visited the household where the selected individuals resided and explained 

the study to them or their guardian in a local language. After the information, individuals were 

given the opportunity to ask questions and then decide if they would consent to their children or 

themselves being in the study. If they did, they were requested to sign a consent form on their 

own or their children’s behalf

Cross-sectional survey

At the beginning of the follow-up period (September 1997), all the participants were invited to 

attend the hospital for an initial cross-sectional survey. During the survey, 2-5ml of blood were 

obtained by venepuncture. A I ml aliquot was placed in a serum separator microtainer tube while 

the rest was placed into a 15ml tube containing 50ul of heparin and taken to the laboratory for 

plasma separation by centrifuging. The plasma obtained was stored at -20^0. In addition, a full 

examination including a malaria slide and body temperature reading was done by a doctor and 

all histories of fever recorded. Appropriate treatment was given for any condition that was 

diagnosed. A second survey on a selected group of 130 individuals was carried out at the end of 

the year. The selection was done to include all individuals who during the year presented 

with three or more episodes, and a proportion of those who had had two, one, or no episodes.
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Active and passive surveillance of malaria episodes

All the participants were actively monitored for malaria episodes for a period of two years. 

During this period, field workers visited each participant once a week and recorded their body 

temperatures, and noted any history of fevers in the preceding 24 hours. Anyone with current 

fever (auxiliary body temperature >37.5) was given bus fare and requested to go to a special 

study clinic at the hospital immediately. At the hospital, further examination including a full 

blood count and a malaria slide was carried out and appropriate treatment given. For individuals 

who gave a history of fever in the preceding 24 hours, a malaria smear was made from a finger- 

prick blood sample and taken back to the lab for examination. In order to ensure that no fevers 

were missed between the field worker visits, all participants were asked to report to the study 

clinic any time they had any health complaint. Individuals who were inaccessible to the field 

workers for more than three weeks were withdrawn from the study

Data storage.

Both field and hospital surveillance data were recorded on specially designed forms before being 

double entered and verified in a FoxPro data base on IBM-compatible personal computers at the 

Center.
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CHAPTERS

THE KINETICS OF ANTIBDOY RESPONSES TO PIES A

3.1 INTRODUCTION

Several studies have shown that most individuals can make humoral responses to PIESA 

(Forsyth, et a l, 1989; Aguiar, et a l, 1992; Iqbal, et a l, 1993) and that these responses may 

protect against malaria in a variant-specific manner (Marsh, et a l, 1989; Bull, et a l, 1998; Giha, 

et a l, 2000; Dodoo, et a l, 2001). However, most of the studies on PIESA have assessed 

responses to parasite isolates from sources that are different from that of the sera (heterologous), 

or to autologous parasites for only a short period after an episode. Such studies can only assess 

residual markers of a response but shed relatively little light on its natural history. As a result, no 

data are available on the kinetics of anti-PIESA response to the autologous parasites an acute 

episode of malaria. The aim of this study was therefore to describe the rate, magnitude, and 

isotype profiles of anti-PIESA antibody responses to autologous parasites in children following 

an acute episode of malaria.

3.2 STUDY DESIGN 

Patients and blood sampling

Plasma samples obtained from children convalescing from an acute episode of malaria were 

assayed for agglutinating antibodies directed against PIESA of the parasite that had caused the 

episode. The study was done in two phases, the first between July 1997 -  October 1997, and the 

second between July 1998 and January 1999. During the first phase, plasma samples were
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obtained 1,2, 3, 6, after treatment while in the second phase the follow-up was extended to 9 and 

12 weeks. Details of the study frameworks are given in section 2.6.

Agglutination assays

Each child’s set of plasmas from different time points was titrated for agglutinating antibodies 

against the autologous parasite isolate. The plasmas were at first diluted in sera from Europeans 

with no prior exposure to malaria (non-immune) and then a further 1:5 dilution was done in 

RPMI so that the final assay dilutions were 1:5, 1:25, 1:50, 1:100, and 1:200. In the first phase, 

some of the assays were done on parasites grown to maturity from cryopreserved rings, while the 

rest were done on parasites that were grown fresh from patients and cryopreserved as mature 

parasites. All the assays in the second phase used cryopreserved mature parasites. The suitability 

of cryopreserved schizonts as a source of parasite material in agglutination assays was assessed 

and is described in section 2.4.

Reading of the assay slides differed slightly between the two phases: in the first phase, 

agglutinates were first sought in every third field. If no agglutinates were found in this run was 

the whole slide re- read considering all the fields; in the second phase, all the fields were read in 

the first run. The highest dilution at which agglutination was positive was taken as the titre of 

agglutinating antibodies in the sample. Pooled non-immune European sera and RPMI without 

plasma were included as negative controls to assess non-specific agglutination.
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Flow cytometry

The isotypes of the PIESA antibodies were assessed by flow cytometry as per the described 

protocol (chapter 2). The percentage of cells positive was taken as a proxy measure of antibody 

titre.

Data analysis

Data was stored, formatted, and analysed with Microsoft Excel. Further analyses were done 

using Stata. Where proportions have been compared, Fischer’s exact test was used.

3.3 RESULTS 

General results

48 children were recruited in the first phase, 6 of these were lost to follow-up, parasites from 9 

children failed to grow in culture after recovery from cryopreservatibn while parasites from 6 

other children failed to agglutinate even in pooled immune serum that agglutinates most isolates 

from Kilifi. 5 isolates exhibited non-specific agglutination. Therefore, data from 22 children 

were included in the analysis. In the second phase, 48 children were recruited, 6 of who were lost 

to follow-up, 13 isolates either failed to grow properly or looked damaged upon recovery from 

cryopreservation, while another 5 exhibited non-specific agglutination. Consequently, data from 

26 children were analysed. The flow cytometer became available at Kilifi sometime during the 

second phase of the study and due to lack of parasite material, isotype analysis was done for 

responses in 11 children only.
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Prevalence of antibodies to autologous parasites over time. (Fig. 3.1)

About a third of the children had agglutinating antibodies to the infecting parasite at the time of 

admission to hospital; this proportion increased to over 80% by the second week and remained 

above 80% for the next 10 weeks (Fig. 3.1 A). The geometric mean titres also followed a similar 

trend showing a sharp rise between the time of admission and the second week (Fig. 3. IB). The 

peak at week 2 was followed by a dip until the week, a slight rise occurred in the 9^ week 

after which the titres continued to fall. Both the percentage of children who were positive at each 

time point and the titres of antibodies were lower among children fi-om the first phase compared 

to the second but showed similar trends.

Figure 3.1
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Isotypes profiles of anti-PIESA antibodies. (Fig. 3.2)

Plasma samples from 11 children were analysed by flow cytometry to determine the isotypes of 

PIESA antibodies. Although individual profiles varied in magnitude of response, in general, IgM 

dominated the early response and increased to a peaked in the first two weeks after which the 

titres dropped sharply in the third week before decreasing more gradually through the rest of the 

study period. XgG3 dominated the IgG responses rising to a peak in the first two weeks, which 

was followed by a gradual decline in the next 11 weeks. Except for a slight peak in week 2, IgGl 

titres were generally low throughout the study period. Both IgG2 and IgG4 titres also remained 

low throughout the study period. One child ( no. 49) differed slightly in that early responses were 

dominated by relatively high titres of IgG3 while levels of IgGl also rose rapidly and continued 

to rise for the next 12 weeks.

Factors influencing rate and magnitude of response

Logistic regression was used to determine what factors influenced the time to sero-conversion 

and the highest titres achieved. Age, parasitaemia at admission, assay parasitaemia or area of 

residence of the children did not influenced these two parameters
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Figure 3.2
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Figure 3.2 cont’d
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Individual agglutination profiies. (Fig. 3.3)

The children exhibited wide variations in their agglutination antibody profiles. I first assessed 

the profiles visually and grouped together children who had similar profiles. Three groups 

became apparent when I did this. Figure 3.3 shows the plots of agglutination profiles of all 

individuals in each group, and the corresponding antibody isotype profiles for the children in 

each group. These groups were apparent in both phases of the study despite the fact that lower 

antibody titres were observed in children during the first phase.

Children in the first group had no agglutinating antibodies at admission, but they showed a rapid 

increase in antibody titres in the first two weeks after which the titres remained constant through 

week 12. Eleven (50%) children in the first phase and 14 (54%) in the second fell into this group. 

The second group consisted of 5 (one from phase 1) children who already had agglutinating 

antibodies to the infecting parasite at the time of admission and in whom antibody titres 

remained high throughout the study period. Isotype profiles from children in these groups were 

consistent with a primary response with IgM dominating the early part of the responses and IgG 

subclasses the later part. In the third group, 18 (40%) consisting of 11 (50%) children in phase 1 

and 7 (26%) in phase 2 responses appeared to be transient, with antibody titres being generally 

lower than in the first two groups and disappearing at various time points during the study. 

Responses from two children (no 21 and 26) in this were dominated by IgM response while IgG 

responses remained very low through out the study period
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Figure 3.3
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Antibody profiles and re-parasitisation.

I monitored re-parasitisation of the study children by preparing malaria slides during each 

convalescence visit. It was not possible to distinguish between recrudescence and re- infection, 

or to determine the phenotype of the emergent parasites as the parasitaemia were too low for 

culturing. During the first phase, two children returned with parasitaemia, one in the third, and 

one in the sixth week. 11 (42%) children presented with parasitaemia at various time points 

during the second phase of the study. One child became parasitaemic within two weeks of the 

initial episode, 3 children in the third week, while 6 more children were parasitaemic at week 6, 

9, or 12. The majority (71%) of children in the third response profile group were re-parasitised 

during the study while only 6 out 19 (31%) in the other two groups were (Odds ratio = 5.42, C.I. 

0 .62-57.87, P= 0.085).

3.4 DISCUSSION

The ability of individuals from malaria endemic areas to respond to PIESA has been 

demonstrated frequently. The protective role of antibodies to these antigens has also been 

demonstrated. However, most of the studies on PIESA have been cross-sectional or longitudinal 

studies restricted to three weeks after an episode. No data is available on the kinetics of response 

to PIESA. In this study, I looked at the rate, magnitude, and quality of anti-PIESA response in 

children recovering from an acute episode of uncomplicated malaria.

The majority of children in this study developed agglutinating antibodies within two weeks of an 

acute malaria episode. This confirms the immunogenicity of PIESA and is consistent with
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previous reports (Marsh and Howard, 1986; Forsyth, et al., 1989; Iqbal, et al., 1993; Reeder, et 

al., 1994; Bull, et al., 1998). The prevalence of these responses remained high even ten weeks 

after the clinical episode with which they were associated. The mean titre on the other hand rose 

sharply during the first two weeks then dipped slightly until the sixth week. A slight rise was 

observed in week nine then the titres continued declining. This kinetics profile is similar to that 

of SICA antibodies observed in P. knowlesi infections in rhesus monkeys (Butcher and Cohen, 

1972). There was a significant difference between the magnitude of responses observed in the 

first and second phases of the study. No good explanation could be found for this although it is 

possible that differences in the way the agglutination slides were read in the two phase may have 

had a contribution.

The isotype profiles of responses in 11 of the children were typical of a primary antibody 

response with IgM dominating the early part of the responses and IgG gradually taking over later 

and corresponded with the profile of agglutinating antibodies. The peak in agglutinating antibody 

titres at week 2 corresponds with the IgM and IgG3 peak while agglutination beyond this point 

seems mediated by IgG3 and the decreasing IgM antibodies. IgM’s short half-life compared to 

IgG’s would explain why other studies using heterologous isolates failed to observe its 

involvement in agglutination and surface immunofluorescence assays (Piper, et a l, 1999b).

The predominance of IgG3 is typical of responses to many malaria antigens (Beck, et a l, 1995a; 

Taylor, et a l, 1995; Rzepczyk, et a l, 1997). In vitro, cytophilic antibodies have been shown to 

co-operate with monocytes in inhibiting parasite growth and promoting phagocytosis while IgG2 

and IgG4 appear to antagonise this co-operation (Bouharoun-Tayoun, et a l, 1990; Bouharoun- 

Tayoun, et a l, 1992). Correlation between protection against malaria morbidity and malaria-
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specific cytophilic antibodies has also been reported (Salimonu, et ah, 1982; Aribot, et al., 1996; 

Ferreira, et a l, 1996; Sarthou, et a l, 1997). Although IgG3 persisted beyond 12 weeks in the 

children, it has a relatively shorter half-life than the other IgG subclasses and might require 

constant boosting to maintain protective levels. The skew of responses to PIESA towards the 

short-lived IgG3 antibodies might help explain the seasonal variation in PIESA antibody levels 

observed in studies (Giha, et a l, 1998) elsewhere and also by ourselves (chapter 4).

When considered individually, the children exhibited considerable variation in the kinetics of the 

responses to PIESA. These variations may reflect differences in host factors such as the levels of 

development of malaria immunity or genetic makeup. They could also reflect varying ability of 

different PIESA variants to provoke immune responses. I placed the children into three groups 

based on similarities in their agglutinating antibody profiles. The first group comprised about 

half the children in the study. These children had no agglutinating antibodies at time of 

admission, but they showed a rapid rise in titres within the first two week, and subsequently 

maintained the antibody levels through week 12. The domination of IgM in the early part of the 

response in 6 children from this group nonetheless indicates that the responses were primary.

Children in the second group were able to agglutinate the infecting parasite at the time they were 

admitted to hospital. This may seem surprising, given that Bull et al (1998) have showed that 

children are unlikely to be infected by parasite against whose PIESA they already had antibodies. 

Only samples from one child in this group were analysed by flow cytometry for isotype profiles 

and it was therefore not possible to draw any firm conclusions. Nevertheless, in this child, the 

isotype profile was more consistent with a primary rather than a secondary response with IgM
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peaking in the first week after the episode and IgG3 a week later. This suggests that these 

children either mounted a more rapid response or had had a longer period of exposure to the 

parasites before the time that the acute plasma sample was taken.

The third group consisted of children in whom the responses did not follow the typical profile 

observed in children in the other two groups. Responses in many of these children were low and 

short lived. In some of the children, the responses disappeared completely during the study 

period while in a few others they seem to disappear and then reappear sometime later. IgM 

dominated responses in two children in this group while IgG was poorly induced throughout the 

study period. Although it is not possible to tell if these isotype profiles were typical of responses 

in all the children in this group, the observation of such profiles nonetheless raises the possibility 

that some children may fail to respond adequately to some PIESA variants. Whether this is due 

to host or parasite factors is an interesting question. Children in this group appeared to have an 

increased risk of becoming re-parasitised during the study period. However, the increase was not 

significant, and these observations would need to be verified in a larger study. Even if these 

observations were true, it would still not be possible to attribute wholly the increased risk of re

infection to inadequate anti-PIESA responses without also examining the children’s capacity to 

respond to other malaria antigens.

In summary, this study reveals a number of aspects of the kinetics of anti-PIESA responses in 

children. First, the majority of the children are able to mount some level of antibody responses 

against PIESA but they exhibit varying profiles of response over time. Analysing samples taken 

at only one time point would not reveal such differences and hence the importance of
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longitudinal monitoring of responses. Second, while the many of the children appear to make a 

rapid and persistent response to PIESA, a number of children appear to have inadequate short

lived responses. It is possible that some of these children fail to switch to IgG after the initial 

IgM responses. These children also appear to have an increased risk of becoming re-parasitised 

earlier than the more the rest of the children. However, these observations will require further 

studies to verify. Third, IgG3, which was the dominant anti-PIESA IgG subclasses, persisted 

beyond 12 weeks and may therefore overlap with new infections that could boost its levels 

through cross-reactive or secondary responses. Finally, although agglutination assays and flow 

cytometry data do not correspond very well at individual levels, they do at a general level thus 

the former method may be used to provide data on kinetics of responses against P. falciparum 

schizont surface antigens where the more expensive flow cytometer is unavailable.
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CHAPTER 4

THE DYNAMICS OF THE ANTI-PIESA REPONSES OVER 

TIME

4.1 INTRODUCTION

The role of anti-PIESA antibodies in mediating protection against malaria episodes has been 

demonstrated in Gambian (Marsh, et a l, 1989), Kenyan (Bull, et a l, 1998) Ghanaian 

(Dodoo, et a l, 2001) children, and in Sudanese individuals (Giha, et a l, 2000). Since these 

antibodies are variant specific, the period required by individuals to reach an immune state 

is thought to reflect the time required for the accumulation of antibodies to the majority of 

locally circulating PIESA variants (Gupta and Day, 1994). This concept is supported by the 

fact that in endemic areas, the number of variants that an individual is able to agglutinate 

correlates with age (Bull, et a l, 1999).

Although the induction of antibodies against both homologous and heterologous (different 

from the one causing an episode) variants during an acute malaria episode has been reported 

(Bull, et al., 1999; Giha, et a l, 1999), the dynamics of accumulation of these specificities 

over time are poorly documented. The only published observations available are from the 

Sudan (Giha, et a l, 1998). However, Daraweesh, the area in which the study was done, has a 

short and very seasonal transmission period and hence the majority of the people have limited 

clinical immunity to malaria, even as adults. It is not known how the dynamics of acquiring 

anti-PIESA antibodies vary under different transmission and immunological backgrounds. 

This study therefore aimed at clarifying the role of both clinical and sub-clinical infections in
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the acquisition and persistence of anti-PIESA antibodies in children living in an area with 

moderate to high malaria transmission.

4.2 STUDY DESIGN

Paired plasma samples obtained from 119 children at the beginning and the end of a one year 

follow-up period (see details in section 2.6.) were assayed for anti-PIESA antibodies to a 

panel of laboratory and field isolates by agglutination and flow cytometry. The changes in the 

children’s antibody repertoire were assessed for relationship with the children’s age and 

clinical experience of malaria during the longitudinal study. A clinical episode was defined as 

having an axillary body temperature of 37.5^C or above in the presence of 5000 or more 

parasites per microtitre of blood.

Agglutination and flow cytometer assays

48 paired plasma samples were assayed for agglutinating antibodies against a panel of 9 

isolates (6 field isolates, and 3 lab isolates -A4, ITGIC5, CIO). Details of the source of the 

field isolates; age and clinical history of donor are presented in table 4.2A. With each isolate, 

all the 48 plasma pairs were assayed at the same time and the slides read blind on the same 

run to avoid inter-assay variations.

A second set of 71 plasma pairs from children, 10 years and younger, including the 48 whose 

plasma was also assayed for agglutinating antibodies, were assayed for anti-PIESA IgG 

antibodies against a further panel of 6 isolates (details in table 4.2B) by flow cytometry. The 

selection was such that plasmas from all children who had three (n=10) or more malaria 

episodes, and a portion of those who had two (n=18), one (n=22), or no episode (n=21)
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during the year were included. For the purpose of analysis children who suffered at least one 

episode during the follow-up year were designated as “cases” and those who did not were 

designated as “controls” Roughly an equal number was selected for four two-year age 

categories. The number of children in each category is given in table 4.1 below.

Table 4.1

Age (months) 0-23 24-47 48-71 >72

Agglutination 14 11 12 11

Flow cytometry 15 17 18 21

The number of children in each age category whose plasma was assayed by agglutination or flow 

cytometry

Data analysis

Agglutination reactions were scored as described earlier, and the data illustrated on a 

checkerboard for visual examination. The percentage of infected cell staining positively with 

FITC for antibodies bound on their surface on flow-cytometer was used as a proxy measure 

for antibody titres with any score below 5% being considered negative. Where proportions 

have been compared. Chi-squares analysis for differences was done using Intercooled Stata 

6 (Stata corporation, Texas, USA ).
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4.3 RESULTS

Prevalence of antibodies to the test isolates at the first survey. (Table 4.2)

In both agglutination and flow cytometer assays, there was considerable variation in the 

prevalence of antibodies to each of the test isolates. Some isolates such as 1542 and 3940 

(table 4.2A) and isolates 3661 and 3076 (table 4.2B) were recognised by the majority of 

children. On the other hand, many of the children failed to react positively with isolate B7 

and the laboratory cloned isolate CIO. Despite variations during the year, the relative 

prevalence of antibodies to the isolates remained similar at the beginning and end of the 

year. Overall, the prevalence of antibodies to the test isolates was higher among the controls 

than among the cases. The average titre was also higher among the controls. However, these 

differences were not significant. A more comprehensive assessment of the correlation 

between anti-PIESA antibodies and protection against malaria within this group of children is 

described in chapter 5.

Correlation between the prevalence of specific anti-PIESA and age

Agglutination (Fig. 4.1 A)

Except for isolate 3661 and 3076 which were agglutinated by most children regardless of age, 

the prevalence of agglutinating antibodies to given isolate increased with age, though the rate 

of increase varied among the isolates. While the prevalence of anti-B7 antibodies increased 

from 4% to 14%, between the ages of 0-2 years and over 8 years, the prevalence of 

antibodies against isolate 3026 rose from 30% to 85% and that of antibodies to ITGIC5 

increased 8-fold from 7% to 57%. A slight dip was observed in the percent of children 

agglutinating isolate 4386 after the age of 6-8 years.
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Flow cytometry (Fig. 4. IB)

The prevalence of antibodies to isolates A4, 1541, 3893, and 3944 increased with age. The age- 

prevalence pattern was most distinct in the case of isolate 3944. Most of the children in this 

study agglutinated the other two isolates (1542, and 3940) regardless of age.

Figure 4.1

e-prevalence plots for antibodies 

linst PIESA o f various isolates 

myed by agglutination (A) and by 

w cytometry (B)
" a 0-2

B

A4 0-2
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Variation in Anti-PIESA antibodies repertoire over a one-year period (Tables 

4.2A & B).

Changes were observed in the prevalence of antibodies to all the isolates between the first 

and second bleed. These variations have been considered at two levels: those resulting in the 

acquisition of novel specificities or complete loss of pre-existing ones and those resulting in 

a partial loss or boosting of pre-existing agglutinating antibodies

Table 4.2 A

Isolate A4 1541 3944 3893 3940 1542

Age of donor (months) 48 47 24 48 19

Clinical history of donor Mild Severe Severe Mild UC

Mean age of +ve at bleed + SD 
(months) 50 ±37 55±32 60+34 58+31 54 ±31 52±31

Positive at bleed 19 (26.^ 24 (33.^ 25 (35..^ 36 (30. 49 (69.0) 63 (33.;;

Positive at 2"̂  bleed 14 (19.7) 27 17 (23.9) 25 (33.2; 55 (77.3; 52 (73.2;

Complete loss of 
Antibodies by end of year 12 11 (45.8) 14 (56.0) 21 (58.3) 8 (7d.3; 17 (27.0)

Sero-conversion 7 (13.5) 14 (29.8) 6r/3.(^ 10 (28.6) 14 (63.6) 6(73.q;

Partial loss of antibodies 2 r/0. 4f7d.;9 3 (720) 8(22..^ 20 (40.8) 24 (33.7;

Boosting of existing responses 1 fJJ:; 4f7d.;9 3 3 (3.3; 6 (72..^ 5(2(?.^

Summary data o f the dynamics o f anti-PIESA responses to 6 isolates assayed by flow Cytometry. 
Sero-conversion is the percentage o f children who were initially negative that became positive by 
the end o f the study. Clinical history o f donor indicates the severity o f the malaria episode during 
which the isolate was obtained. UC- uncomplicated. Percentages are given in parenthesis.
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Agglutination (Fig 4.2A &B)

There was a net increase over the year the prevalence of antibodies to isolates B7, 3026, 

4386 and 4518, while the prevalence of antibodies to of children who recognised 3076 and 

3661 fell by 33% and 25% respectively. There was no association between acquisition or 

loss of specificities and disease experience during the year. The majority (71%) of children 

who sero-converted to isolates 4518 and 4386 were older than 5 year (X^ = 8.42 P=0.004) 

On the other hand 8/10 (80%) of those who sero-converted to isolate 3026 were below 5 

years in age.

Flow cytometry (Fig 4.3A & B)

The prevalence of anti-PIESA antibodies to all the test isolates except isolates 1541 and 3940 

decreased during the year. However, the variations were not significant. Neither acquisition 

nor loss of specificities was associated with disease experience during the follow-up period. 

Among the controls, the majority (84%) of children who acquired new specificities or in 

whom pre-existing antibodies were boosted were below the age of 7 years (0R= 6.59, 95% 

Cl: 1.44-34.30, P=0.004).
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Figure 4.3
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Acquisition and loss of specificities in relation to clinical experience. (Table 4.3)

I stratified the children by disease experience during the study and considered the average 

number of new specificities that each group gained and also the number of existing 

specificity that were lost the results are summarised in table 4.3. To avoid the effect of the 

decay of passively transferred maternal antibodies, five children who were below the age of 6 

months were excluded in the analysis. The loss of specificities was higher among controls 

than among case but the difference was not statistically significant.

Table 4.3

Control

Cases

Flow cytometry

Acquired Lost

0.80

0.85

1.35

0.94

Agglutination

Acquired Lost

1.07

0.90

1.33

0.90

Mean specificities acquired and lost during the study period in relation to disease

experience

Acquisition and loss of specificities in relation to age. (Table 4.4)

To determine if age influenced the average number of specificities acquired or lost by an 

individual during the year, I stratified the children by age into three groups, those below the 

age of 6 months, between the age of 6 and 83 months and those above the age of 83 months. 

The 83 month cut off was chosen because the period prevalence of mild malaria incidences 

dropped significantly in individuals above this age suggesting they might be significantly

139



more immune than the rest (chapter 5). Children below the age of 6 months predominantly 

lost specificities, as did those above 83 months assayed by flow cytometry. On the other 

hand, children in the oldest group assayed by agglutination had higher, though not significant, 

loss and gain of specificities than the rest.

Table 4.4

<6 months

6 -83 months

>83 months

Flow cytometry

Acquired Lost

0.40

0.96

0.31

2.60

1.00

1.31

Agglutination 

Acquired Lost

0.00

0.97

1.50

230

0.92

1.50

Mean number o f specificities acquired and lost during the study period in relation to age

Correlation between the initial prevalence of antibodies to each isolate and the 

dynamics of subsequent variation. (Fig. 4.4)

The proportion of children who sero-converted to a given isolate during the year was 

correlated with the initial prevalence of antibodies to the isolate (r  ̂= 0.751, P<0.001). The 

majority of children who initially lacked antibodies to isolates such as 3076, 3661, 1542 and 

3940 that were extensively recognised at first cross-sectional survey, acquired antibodies to 

these isolates during the year (Fig 4.4A). On the other hand, fewer children acquired 

antibodies to isolates that were poorly recognised in the first survey.
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The loss of antibodies to a given isolate showed a negative correlation (r  ̂= 0.605, P=0.004) 

with the prevalence of antibodies to the isolate at the beginning of the year (Fig. 4.4B). 

There was no association between the chance of complete loss of antibodies and the initial 

levels the antibodies as measured by either flow cytometry or agglutination assays except for 

the case of response to isolate 1542 (OR - 0.215, 95% Cl: 0.088 -  0.529, P=0.001)

Figure 4.4
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who lost responses to the isolates (B) plotted against the prevalence o f antibodies to each o f the 

isolates at the beginning o f the study year. Each point corresponds to an isolate. The plots combine 

from both the agglutination assays and flow cytometry
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4.4 DISCUSSION

Antibodies to PIESA agglutinate schizont-infected erythrocytes in a variant-specific manner 

(Newbold, et a l, 1992) and are associated with protection against malaria episodes in some 

circumstances (Marsh, et al., 1989; Bull, et al., 1998; Giha, et al., 2000; Dodoo, et al., 2001). 

It has therefore been suggested that the acquisition of immunity to malaria might involve the 

accumulation of antibodies specific to the repertoire of locally circulating variants (Gupta and 

Day, 1994). That this might be the case is supported by the observation that the number of 

PIESA variants that individuals living in endemic areas can agglutinate increases with age 

(Bull, et al., 1998). However, the dynamics of acquisition of anti-PIBSA antibodies are 

unclear. Work done in the Sudan revealed that there is marked seasonal variation in 

individuals capacity to agglutinate a given parasite isolate and that both clinical and 

asymptomatic infections contribute to the stimulation of anti-PIESA responses (Giha, et al., 

1998). In Daraweesh, where the Sudanese study was done, transmission is unstable and 

seasonal, and the residents have poorly developed malaria immunity irrespective of age. It is 

not known how the acquisition of anti-PIESA antibodies varies under different transmission 

and immunological backgrounds. In this study, I examined the accumulation of anti-PIESA 

antibodies in Kilifi where transmission is higher and the classical age-immunity correlation 

is evident.

Plasma pairs obtained from children in two cross-sectional bleeds carried out a year apart 

were assayed for anti-PIESA antibodies against a panel of field and laboratory-adapted 

parasite isolates by agglutination and flow cytometry. The proportion of parasites positive for 

FITC surface staining rather than MFI was used as a proxy measure of antibody titres 

because this was better correlated with agglutination scores (see chapter 2).
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The results confirmed previous observations from work done in Kilifi and elsewhere. First, 

both field and laboratory isolates display unique agglutination profiles when tested against a 

panel of sera confirming that they largely consisted of parasites expressing distinct PIESA 

variants (Newbold, et al., 1992). Second, the prevalence of antibodies to different isolates 

varies considerably. Some isolates such as 1542 3076, 3661 and 3940, were extensively 

recognised by the children while others (B7, and 4518) were only infrequently recognised. 

This is in line with the idea that there may exist common and rare PIESA variants (Bull, et 

al., 1999). Third, the prevalence of antibodies against PIESA variants increases with age 

(Forsyth, et a l, 1989; Iqbal, et a l, 1993; Bull, et al., 1998). Fourth, consistent with idea that 

increasing immunity with age might select for less commonly agglutinated PIESA variants 

(Bull, et a l, 2000), a strong, although not significant, inverse correlation (r^=0.742) was 

observed between the frequency with which an isolate was agglutinated and the average age 

of the children who agglutinated it. However, this correlation was not evident in the flow 

cytometry arm of the study. Fifth, individuals exhibit seasonal variation in their anti-PIESA 

antibody repertoire (Giha, et al., 1998).

The laboratory cloned isolates A4, CIO, and ITGIC15 from Brazil were not as widely 

recognised as the wild isolates. This may be because clones by nature contain a single or few 

variants while wild isolates many have multiple variants (S. Kyes, personal comm.) and 

therefore the prevalence of antibodies against a wild isolate is a sum of the prevalence of 

antibodies to it’s constituent variants. Alternatively, the laboratory isolates may have been 

poorly represented in the local transmission system of Kilifi. It has been suggested that the 

ability of adults to agglutinate isolates from remote locations might be evidence for a variant- 

transcending immunity. I could not verify this as it was not possible to determine if  the
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children who acquired antibodies to these isolates actually encountered PIESA variants that 

are cross-reactive with the Brazilian isolates, or they were exhibiting variant-transcending 

responses. However, the fact that the children who recognise these isolates did not 

necessarily recognise all the other isolates suggests that if  they had variant-transcending 

responses, these were not complete.

All children exhibited temporal variations in their PIESA antibodies repertoire. I assessed the 

effect of clinical episodes and age on the dynamics of these variations. Children who 

presented with at least one episode during the study year were designated cases while those 

who did not were designated controls. Both cases and controls showed similar level of the 

acquisition of novel specificities but the loss of specificity was slightly higher among the 

controls though not significantly. This suggests that although both symptomatic and 

asymptomatic infections contribute to the acquisition of novel specificities, clinical episodes 

may be more effective in maintaining detectable levels of anti-PIESA specificities. Similar 

observation were made by Giha et al, (2000) who reported that in Daraweesh, individuals 

who suffered a clinical episode during a follow-up period showed a significant increase in 

their post follow-up anti-PIESA responses repertoire while those who did not did not show 

any increase. Among the controls, acquisition of novel specificities was associated with a 

young age. This suggests that younger controls were acquiring new specificities through 

asymptomatic infections. Thus, despite not presenting with a clinical episode of malaria 

during the study period, the younger controls may still have been more susceptible to malaria 

infection than their older counterparts

When I considered the effect of age on the variation, I found that children below the age of 6 

months primarily exhibited loss of specificities. This most likely reflects the decay of
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passively acquired maternal antibodies. Despite having suffered at least one clinical episode 

of malaria, these children had lower levels of acquisition of novel specificities during the 

follow-up period than the rest of the children. One possibility is that the children failed to 

mount detectable response to variants encountered during the period. Alternatively, the older 

children might have had a wide repertoire of pre-existing, but undetectable specificities at the 

beginning of the year that were subsequently re-stimulated by infections with cross-reactive 

PIESA variants. If this were the case, such pre-existing repertoires might be expected to be 

limited in very young children.

Children who were above 7 years of age also displayed higher loss and lower acquisition of 

specificities compared to those between 6 and 83 months of age, although this differences 

were not significant. Since the majority of children in this age group did not suffer a clinical 

episode of malaria during the year, the observed higher level of loss of specificities is in line 

with the earlier proposal that clinical episodes may be important in maintaining detectable 

levels of anti-PIESA antibodies. The lower rate of acquisition of new specificities might be 

due to the higher prevalence of antibodies to the test variants among children in this age 

group at the beginning of the study.

I constructed checkerboards to help me explore the dynamics of anti-PIESA responses to 

each test isolates. The acquisition of agglutinating antibodies to isolates 4518 and 4386 

occurred predominantly in children who were above 5 years of age. Isolate 4518 is 

interesting in that it came from a very young child (4 months) and yet was rarely recognised 

by the children in the study. Bull et al 1998 have described a similar isolate obtained from a 3 

month old child and which was rarely agglutinated by children sera. They have suggested that 

the presence of maternal antibodies in the donor child could create an immune environment
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similar to that in an adult and hence select for rare parasite variants that would normally be 

encountered at an older age. Thus, the acquisition antibodies to such variants may be 

associated with increasing immunity and age. Acquisition of antibodies to isolates 3026 on 

the other hand was associated with a young age. No obvious explanation could be found for 

this observation except perhaps that it came from a relatively young child though not as 

young as the donor of isolate 4518.

The proportion of children who sero-converted to a particular isolate during the year was 

highly correlated with the prevalence of antibodies to that isolate at the beginning of the year. 

In other words, the majority of children who initially did not recognise isolates such as 3076, 

3661, 1542 and 3940 that were commonly recognised by other children, acquired antibodies 

to the isolates by the end of the year. This observation indicates that PIESA variants that were 

defined as common at the beginning of the year by agglutination assays and flow cytometry 

were indeed common in the local transmission system during the study year.

On the other hand, the proportion of children who lost antibodies to a given isolate was 

negatively correlated with the initial commonness of the isolate. This suggests that responses 

to the more common isolates are maintained by boosting through frequent contact with the 

isolates. Alternatively, it could be that the initial levels of antibodies to the commoner isolates 

were higher than those of antibodies to the less common isolates and hence persisted for a 

longer period. I did not titrate the test plasmas so I could not tell the levels of antibodies in 

them. However, I used results from cytometry and agglutination as proxy measures of 

antibody titres. Initial levels to all but one isolates did not influence the likelihood of the 

antibodies being absent by the end of the year. Thus, it is unlikely that the second explanation 

is applicable here. Finally, it is possible that the apparently large proportion of children
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losing antibodies to the less commonly recognised isolates is simply due to the low number 

of children who initially recognised these isolates rather than lower initial levels of 

antibodies to this isolates.

The temporal variations in anti-PIESA specificities repertoire observed in this study suggest 

that anti-PIESA responses may be short-lived. Observations from these (chapter 3) and other 

studies elsewhere (Piper, et a l, 1999) suggest that antibody responses to PIESA may be 

dominated by IgG3 antibodies. If this were the case, then IgG3’s short half-life would partly 

help explain the briefiiess of the responses observed here. In addition, isotype profiling of 

anti-PIESA responses among a separate group of 11 children from Kilifi (chapter 3 ) 

suggests that some children may fail to switch to IgG after initial IgM responses to PIESA. 

Such failure might reflect the induction of T-independent responses that are normally IgM 

dominated, short lived, and associated with poor induction of memory response. The 

observations that in malaria endemic areas, older individuals tend to have a wider repertoire 

of anti-PIESA specificities than children (Forsyth, et al., 1989; Iqbal, et al., 1993; Bull, et al., 

1998) suggest that despite these temporal variations, repeated infection nonetheless results in 

a net gain in the apparent size of an individual’s anti-PIESA specificities repertoire.

In summary, this study has shown that children in Kilifi exhibit considerable temporal 

variation in their repertoire of anti-PIESA specificities, which suggests that the responses 

may be short-lived. It has also shown that both symptomatic and asymptomatic infections 

may be involved in the acquisition of anti-PIESA antibodies. The acquisition of antibodies to 

PIESA variants may be associated with age, consistent with the idea that the prevailing 

immune environment in a host might favour some PIESA variant over others. In addition, this 

study indicates that the commonness of a parasite as demonstrated by agglutination assays or
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flow cytometry corresponds to the commonness of the isolate in the local transmission 

system. However, it is not clear over what duration this relationship holds. Finally, both 

agglutination assays and flow cytometry gave similar results. This is strong evidence that the 

two methods to a large extent are assessing the same responses.
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CHAPTERS

PROTECTION AGAINST CLINICAL EPISODES OF 

MALARIA BY VARIANT-SPECIFIC RESPONSES AGAINST 

PIESA

5.1 INTRODUCTION

Antibody responses to PIESA are variant-specific and there is evidence to suggest that they 

provide variant-specific protection against malaria. In view of this, the findings in a study in 

the Gambia (Marsh, et a l, 1989), the Sudan (Giha, et a l, 2000), and Ghana (Dodoo, et a l, 

2001) that anti-PIESA antibodies to some variants but not others may be associated with 

protection against clinical episodes caused by apparently heterologous variants are difficult to 

explain. It is possible that such antibodies confer cross-protection against the variants causing 

clinical episodes. Alternatively, the variants in question might be a sufficiently common 

cause of disease in the study area so that possession of antibodies against them is associated 

with reduced incidence of disease. However, possession of these responses might simply 

reflect generally better anti-malaria immunity. We carried out a study to see if  anti-PIESA 

responses to some local field and laboratory-cloned isolates were associated with protection 

against clinical episodes of malaria among children in Kilifi. We attempted to address the 

question of how such protection might be mediated by checking if  protection was correlated 

with the relative frequency of a PIESA variant in the local transmission system during the 

study period
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5.2 STUDY DESIGN

The relationship between the possession of antibodies against various PIESA variants and 

the risk of subsequently suffering a clinical episode of malaria was assessed in two sets of 

data. The first set of data came from 256 children of up to 10 years of age. These were all the 

children who participated in the cross-sectional survey at the beginning of the longitudinal 

study. The plasma samples obtained at the survey were assayed by flow cytometry for anti- 

PIESA antibodies against a panel of laboratory (A4 and ITGIC15) and 6  field isolates and 

the levels of response to each isolate assessed for association with protection against clinical 

episodes during the follow-up period. Details of the field isolate donors are given in table 5.2. 

The second set of data came from the study on the dynamics of antibody responses to PIESA 

described earlier on (Chapter 4). The children involved in this earlier study were a subset of 

the 256 mentioned earlier on in this paragraph. In this study, the children’s anti-PIESA 

responses to a panel of 15 parasite isolates (Table 4.2A & B) at the beginning and the end of 

a one-year follow-up period were assessed by either agglutination (48 children) or flow 

cytometry (71 children). The rate of sero-conversion to the isolates during the study period 

was taken as a reflection of how frequently the isolate was encountered during the study 

period. These data was therefore used to explore the relationship between protection against 

clinical episodes by anti-PIESA responses and the relative frequency with which the test 

isolates were encountered in Kilifi.

Data analysis

For the purpose of this study, a clinical episode of malaria was defined as fever (axilliary 

temperature = >37.5 ^C) in the presence of 5000 parasites per micro litre of blood. For the 

responses that were assayed by agglutination, the degree of agglutination scored on a semi- 

quantitative scale of increasing intensity was taken as a proxy measure of the agglutinating
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antibody titre. For flow cytometry, the proportion of cells positive for FITC staining was 

taken as proxy measure of antibody titre. Although the field isolates might have consisted of 

more than one PIESA variant, it could not have been possible to separate the constituent 

variants and therefore the isolate was treated as a single variant. Since the relationship 

between functionality and titre might differ among antibodies directed against different 

PIESA variants (i.e. high titres of antibodies against one variant might have effects equal to 

those of lower titres of antibodies against another variant), the titres were standardised by 

expressing each child’s response against each of the isolates as a ratio of the highest response 

observed for that particular isolate. The relationship between titres of antibodies to each 

isolate on the risk of a child suffering a clinical episode of malaria during the two-year study 

period was assessed by logistic regression after correcting for age. Since responses to some of 

the isolates were significantly correlated, calculation of the protective effect of responses to 

each isolate was adjusted to take account of any other responses that were also associated 

with protection.

5.3 RESULTS

General Observations (Table 5.1 & Fig. 5.1)

The children were categorised into seven one-year age groups ranging from 0 to 7 years and 

above. 106 (41%) children had no episode during the two years while 63 (25%) children 

presented with one episode and 87 (34%) had two or more episodes. The highest number of 

episodes in any child in the two years was 8 . Table 5.1 is a summary of the mean period 

prevalence of episodes per child within each age group in the two years of the study. The 

highest number of episodes per child was observed in the 5 years group. Figure 5.1 shows the 

distribution of episodes among the age groups. The proportion of children who had at least
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one episode in the first year was similar among the children below age of 7 years lying between 

40-60% with a peak in the 3-years group. However, a significant drop to 17% was observed at 

the age of 7 years and above (X  ̂=12.11, P=0.0005).

Table 5.1

Age (mnths) 0-11 12-23 24-35 36-47 48-59 60-71 72-83 >84

n 13 56 25 32 37 30 27 36

Year I 0.62 039 0.76 0.76 0.76 0.97 032 0.17

(sd) (0.87) (1.44) (0.83) (0.96) (0.83) (1.32) (0.70) (038)

Year 2 0.92 0.70 032 0.60 0.70 0.50 0.30

(sd) (1.15) (0.90) (0.69) (0.98) (113) (0.94) (0.67)

The average number o f episodes per child in the two years follow-up up. Sd -  standard deviation

Figure 5.1

80%

70%

60%

50%

o y e a r  1 
sy e a r2

§ 40%

30%

20%

10%

0%
0-11 12-23 24-35 36-47 48-59 60-71 72-83 >84

Age (months)

Percentage o f children in each o f the age category who presented with at least one episode during the 
first and second year o f the study. The 0-11 month category was absent in the second year o f the 
study.
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The prevalence of antibodies to the test isolates. (Table 5.2 & Fig. 5.2))

Only 4% of the children had antibodies to Isolate B7 while 50% of the children had 

antibodies to isolate 3030. The other isolates were recognised by between 20-30% of the 

children (Table 5.2). The number of isolates an individual recognised was significantly 

correlated with age (r̂  = 0.129, P>0.001, fig.5.2) but was not associated with protection 

against clinical episodes. Some of the children below the age of 6  months had high antibody 

titres and recognised a large number of isolates.

Table 5.2

Isolate B7 1776 4451 4518 ITGIC15 1509 A4 3030

Clinical history o f donor UC. 

Age of donor (months) 48

Antibody prevalence 3%

Severe Severe Severe

6 36 38

19% 20% 21% 23%

UC. Severe

32 36

26% 30% 50%

The prevalence of anti-PIESA antibodies to the test isolates. UC. -  uncomplicated malaria among 
256 children

Figure 5.2

The number o f isolates that a 
child recognised plotted against 
the child’s age. The vertical bar 
corresponds to 6 months. The 
diagonal line is the regression 
line Each point represents data 
from an individual child 
(n=256).

■s
I
I
I
©

8

7

6

5

4

3

2

1

0
12 2 4 3 6 6 0 9 64 8 7 2 8 4

Age (months)

153



Relationship between specific anti-PIESA responses and age. (Fig. 5.3)

The titres of anti-PIESA responses to each of the test isolates were significantly (R<0.001) 

associated with age except for response to isolates 4518.

F igu re 5.3

3030

1509

4518

0  1 2  2 4  3 6  4 8  æ  7 2  8 4  %  1 0 8  1 2 0

1776

B7

0  12  2 4  3 6  4 8  6 0  7 2  8 4  9 6  1 0 8  1 2 0

ITGIC15

Individual antibody responses to 8 isolates plotted against age in months of the plasma donors, titre 
is a given as a ratio o f the highest response to each isolate. The faint vertical line corresponds to 6 
months (n=256). A regression line is included in each plot.
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Correlation between titres of specific antibodies to each isolate and the total 

number of isolates that a child recognised.

Table 5.3 below gives the coefficients of correlation (r^) between specific responses to each 

isolate and the total number of isolates against which a child had antibodies.

Table 5.3 A

Isolate 3030 1776 A4 4451 1509 ITGIC15 4518 B7

Corr Coeff. 0.740 0.661 0.561 0.538 0.536 0.506 0.392 0.258

B

Isolate 3893 1542 3940 3944 1541 A4

Corr. Coeff. 0.800 0.783 0.772 0.739 0.603 0.436

The correlation between responses to each isolate and the number o f test isolates to which a child 

had antibodies. A -  dataset 1, n=256. B -  Data from study on dynamics o f anti-PIESA responses 

(n=71)

Relationship between anti-PIESA antibodies and risk of clinical episodes. 

(Table 5.4A)

Anti-PIESA responses to a panel of isolates by 256 children were analysed for association 

with protection against clinical episodes of malaria in a two-year period. Because responses 

to all the isolates tested except isolate 4518 were associated with age which in turn was 

associated with reduced period prevalence of clinical episodes, a logistic regression model 

with a correction for age was used. Possession of antibodies to isolate 1776 was significantly
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associated with protection against clinical episodes in the first year of follow-up and when the 

analysis covered both years of follow-up but not when the second year was considered 

independently. Possession of antibodies to A4, ITG1C15, and isolate 3030 was associated 

with protection in the second year of follow-up. However, only the possession of antibodies 

to isolate 1776 remained significantly associated with protection even after adjusting for the 

other apparently protective responses.

The relationship between protection against clinical episodes by anti-PIESA 

responses and the relative frequency of isolates in the local transmission 

system. (Table 5.4B)

Using data from the study on the dynamics of accumulation of anti-PIESA antibodies 

(chapter 4), we examined whether protective responses could be demonstrated in the smaller 

group of children (n=71) tested against a different set of isolates and if there was any 

relationship between the protective efficacy of the responses and the relative frequency of the 

isolate in the local transmission system as determined by the proportion of children who 

sero-converted to the isolate during the study period. Responses to three isolates (1542, 3893 

and 3940) at the beginning of the study period were significantly associated with protection 

against episodes in the two years even after allowing for age. After adjusting for responses to 

the other two isolates, only responses to isolate 3983 retained a significant association with 

protection.
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5.4 DISCUSSION

I investigated the relationship between anti-PIESA antibodies and protection against 

clinical episodes of malaria in children. Clinical episodes in 256 children were monitored 

for two years through active and passive case detection. A case definition of 5000 

parasites per microlitre of blood and an axillary temperature of 37.5^C and above was 

used. This definition has a sensitivity and specificity of over 90% in Kilifi (T. Mwangi, 

personal communication) and other areas of similar endemicity (Schellenberg, et al, 1994). 

150 (59%) of the children had at least one clinical episode during the follow-up period that 

extended across two minor (November-December) and two major (May -  July) 

transmission seasons. The period prevalence of episodes was roughly the same among 

children below 6  years of age although a peak was observed in the 3-4 years group. At 7 

years of age, a significant drop in the period prevalence was observed. This distinct drop 

suggests that there may be a threshold effect in the development of immunity against 

clinical malaria.

The average number of isolates against which each child had antibodies increased with age 

as did the levels of antibodies against all the isolates except among the youngest children 

who had high titres probably reflecting passively acquired maternal responses. However, 

neither of these parameters was predictive of protection against clinical episodes of 

malaria. Although responses to isolates A4, 1TGIC15, 3030, and 1776 appeared to be 

associated with protection against clinical episodes during the follow-up, only response to 

isolate 1776 were independently associated with protection in the two year period even 

after adjusting for age and the interaction with responses to the other isolates.
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An advantage of this study is that length of follow-up extended over four transmission 

seasons. As a result, we were able to detect protective effects that were otherwise apparent 

when each of the two years was considered individually. Since some children with low 

titres of the protective antibodies might still go through a transmission season without 

suffering a clinical episode by chance, it is possible that considering clinical experience 

over a longer period allows better distinction of different immune status.

The finding that anti-PIESA response against some but not other isolates are predictive of 

protection against malaria episodes is consistent with report from studies done elsewhere. 

Marsh et al (1989) found that titres of agglutinating antibodies against a single parasite 

isolate were predictive of reduced risk of clinical episode of malaria in Gambian children. 

Two other studies using flow cytometry have also reported the association of protection 

against clinical episodes with possession of antibodies to particular isolates but not others. 

In the first study carried out in the Sudan, anti-PIESA responses to 9 isolates were 

examined, only antibodies against a Ghanaian parasite isolate were associated with 

protection against malaria (Giha, et a l, 2000) while in the second study in Ghana, 

responses to the surface of four isolates were analysed, only antibody responses to a 

Sudanese and a Ghanaian isolate were associated with protection (Dodoo, et ah, 2001).

Two possible explanations for these observations are: 1) the particular isolates that are 

target for protective response, were a major cause of morbidity among the study subjects. 

Thus, the possession of antibodies against the isolates at the onset of the study would 

protect against clinical episodes during the study; 2 ) the possession of these particular 

specificities was a marker of a wider repertoire of anti-PIESA responses and /or responses 

to other antigens. The first explanation might be plausible in the Sudanese study as all the
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cases initially lacked the antibodies to the Ghanaian isolate that was associated with 

protective responses but over half of them had acquired them by the end of transmission 

season. This suggests that they had been infected by isolates bearing PIESA similar to 

those on the Ghanaian isolate during the season. Among this Sudanese population most 

infections tend to be symptomatic due to their low immunity. Thus, if the Ghanaian isolate 

was an important cause of morbidity during the study, pre-season ability to resist infection 

by the isolate would have prevented one from suffering clinical episode

We used data from a study on the dynamics of anti-PIESA responses described in chapter 

4 to examine whether the first explanation also applied to our study. From this data we 

had previously calculated the relative frequency with which the isolates were encountered 

in the local transmission system. We therefore hypothesised that if the most frequently 

encountered isolates were also the main cause of morbidity during the study, responses 

directed against them would be associated with protection from clinical episodes. This 

appears to be the case on a univariate analysis, as possession of anti-PIESA responses to 

the two most frequently encountered isolates (3940 and 1542) was associated with 

protection. However, the association was lost when a correction for responses to a third 

less common isolate (3893) that were also associated with protection was done. Only 

responses to the third isolate remained protective even after allowing for age and 

responses to the other isolates. Thus, the relative frquency of an isolate does not explain 

the association between anti-PlESa antibodies to the isolate and protection against clinical 

disease.

Since responses to both isolate 1776 and 3893 had the highest correlation with the total 

number of isolates that an individual recognized, it might suggest that they were markers
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of the size of anti-PIESA specificities repertoire in an individual. Thus, by having a wider 

repertoire of anti-PIESA responses, individuals who possessed responses to these two 

isolates at the beginning of the follow-up were more likely to be protected against any of 

the isolates that were circulating in Kilifi during the study period. However, the number of 

isolates a child recognised at the beginning of the study was not itself associated with 

protection against subsequent clinical episodes and henee this explanation may not be 

sufficient.

This study confirms the association of variant-specific response against certain PIESA 

variants with protection against clinical episodes against malaria. However, 1 did not 

manage to resolve the question of how this apparently heterologous protection is mediated. 

Further work is required to try and establish how isolates that appear to be targets for 

protective anti-PIESA response during a surveillance period are related to the isolates 

causing morbidity during the same period. Mixed agglutination and genetic techniques 

could be used for this.
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CHAPTER 6

PROTECTION AGAINST CLINICAL MALARIA BY 

ANTIBODIES AGAINST SCHIZONT ANTIGENS

6.1 INTRODUCTION

In the studies described in the previous chapters, we set up a longitudinal framework to 

enable us examine in detail immune response to the surface of malaria infected red cells. The 

same framework is clearly appropriate for examining responses to other malaria antigens. In 

chapter 1 , 1 have reviewed the information on some of the merozoite antigens that have been 

identified as potentially important targets for protective immunity against malaria. Many of 

these antigens were initially identified through the screening of antigens on western blots, by 

immune-precipitation or the screening of expression libraries with “immune” sera. However, 

in these studies, the immune sera were often obtained from experimentally immunized animal 

or from people whose disease experience was poorly documented. Thus, the definition of 

“immune” sera was usually imprecise. We therefore decide to re-examine the issue of 

whether we could identify other schizont antigens that may be targets for protective immune 

responses if we incorporate more detailed information on disease experience obtained from 

the longitudinal study in the screening process.

6.2 STUDY DESIGN

Plasma samples from the 127 individuals, 26 of who were older than 10 years, who formed 

part of a two-year active malaria surveillance, were assayed for antibodies to schizont 

antigens of a laboratory isolate A4-BC6 separated by SDS PAGE. These individuals were
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selected because they gave a second blood sample at the end of the first follow-up year. The 

plasmas from the first survey were first assayed individually for IgG antibodies, then the 

individuals were categorised into three groups in relation to their disease experience during 

the 1®̂ year of follow-up. Those who did not suffer any acute episode during the year, those 

who had only one episode and those who had two or more episodes were designated 

“immune”, “semi-immune”, and “non-immune” respectively. Plasma from each category was 

then pooled in order to look for common response. As the number of children in each 

category differed, the pools were diluted using plasma from Europeans with no previous 

exposure to malaria so that final dilution of the constituent plasmas were the same as the 

dilution in the pool with the largest number of children. A second set of pools was also 

prepared with the corresponding second survey plasmas. The pools were then assayed for 

IgM, IgG, and IgG subclasses against the blotted proteins.

6.3 MATERIALS AND METHODS 

Parasite culture and antigen extraction

A4-BC6 clone was used as the source for schizont antigens. This clone was selected by 

panning infected red cells on a monoclonal antibody BC6  that is specific for A4 var gene 

products (Fig 2.2). The parasites were cultured according to standard methods (Trager and 

Jensen, 1976) in group O positive red cells from malaria non-immune European donors until 

the majority of parasites were late trophozoites or schizonts Infected erythrocytes were 

obtained by floating on Plasmagel. The separated infected cells were washed at least thrice in 

phosphate buffered saline (PBS) centrifuging between the washes to remove the buffer. After 

the final wash, the pellet was diluted 1:4 with PBS supplemented with protease inhibitors 

(2mM TLCK, ImM TPCK, ImM PMSF, lOpg/ml leuptin, lOpg/ml antipain, lOpg/ml
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aprotinin and lOpg/ml chymostatin) and lysed with an equal volume of sample buffer 

(lOOmM Tris, 2% SDS, 10% gylcerol, and 10% P-mercaptoethanol). DNA interferes the 

migration of proteins through the gel and was therefore removed from the sample by 

shredding through repeated passing of the sample through a narrow bore needle followed by 

centrifugation at 10,000g for 5 minutes. The supernatant was obtained, boiled for five 

minutes, spun again and the pellet discarded. Un-infected red cell proteins were also 

extracted in the same manner and used as controls on the blot to detect antibodies that might 

be directed against components of the red cell.

Preparation of polyacrylamide gels (Table 6.1 A & B)

The gels were run under reducing conditions. The running gel was prepared by mixing the 

appropriate volumes of buffers depending on the required strength and volume of gel in a 

50ml centrifuge tube. The gel was then poured into the casting cell, overlaid with stacking 

gel that was in turn overlaid with methanol to prevent drying. A comb was placed into the 

stacking gel and the gel left to set. Once the gel had polymerised, the comb was removed and 

the wells washed at least thrice with double distilled water. The whole gel preparation was 

then transferred into an electrophoresis tank and running buffer (3 g Tris, 14.4g glycine, 10ml 

10% SDS, ddH2 0  to 1000 ml) added. A few grains of bromo-phenol blue were added to the 

upper buffer to help track the protein migration through the gel. Table 6.1 A is a summary of 

the buffers used in the preparation of the polyacrylamide gel while Table 6 .IB gives the 

composition of the gels at 5% and 10% strength.
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Table 6.1 A

Solution A Solution B Solution C
48ml IM HCL 48ml IM HCL 30% (w/v) Acrylamide/0.8% (w/v) bisacrylamide
36.3g Tris 5.98gTris
0.23ml TEMED 0.48ml TEMED

ddH2 0  to 1 0 0ml ddH2 0  to 1 0 0ml

B
5% Running Gel 10% Running Stacking Gel

Solution A 2.5 ml 2.5 ml
Solution B 0.95 ml
Solution C 1.7 ml 3.3 ml 1.25 ml
10% (w/v) SDS 0.1 ml 0.1 ml 0.075 ml
10 (w/v) AMPS 0.1 ml 0.1  ml 0.075 ml
ddHzO 5.7 ml 4.0 ml 5.0 ml

A) Buffers used to cast polyacrylamide gels for SDS-PAGE. B) Composition o f gels for SDS-Page. 
SDS -sodium dodecyl sulphate, AMPS -  ammonium persulphate, ddH20 -  double distilled water

Electrophoresis.

6 ul of the protein suspension was loaded in each well on the gel and separated at 2 0 0  volts 

until the tracking dye migrated through the gel. Parasite proteins were separated on a 10% gel 

while un-infected red cell proteins were run at 5%. High precision molecular weight 

markers were electrophoresed along with the schizont extract as a guide to the protein 

molecular weights.

Electroblotting

After the end of the electrophoresis, the gel was transferred onto an electroblotting cassette 

and place into an electroblotting tank filled with ice-cold electroblot buffer (2 0 % methanol,

3.03 Tris and 14.41 glycine made up to one litre with ddH2 0 ). In addition, ice packs were
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place on both sides of the cassette and the buffer agitated continuously by a magnetic stirrer 

to prevent the gel from heating up during the transfer. Proteins were transferred for at least 1 

hour at 1 0 0  volts onto a nitrocellulose membrane .

Probing the blots with antibodies

The membrane were blocked with 0.05% Tween, 0.5% BSA, 5% fat-ffee milk in CMF-PBS 

(0.13 M NaCl, 2 mM KCl, 8  mM Na2HP0 4 , 1.5 mM KH2PO4 ), for at least one hour. After 

washing twice in milk-free blocking buffer, the membranes were cut into strips, and each 

strip placed in a test tube containing test plasma diluted in milk-free blocking buffer. The 

tubes were placed on a shaker and agitated for an hour, after which four ten-minute washes in 

blocking buffer were done. The strips were then probed for half an hour with secondary 

antibodies conjugated to Horse Radish Peroxidase (HRP) diluted in blocking buffer. 

Individual plasma was assayed at a 1:250 dilution. Pools were assayed at 1: 600, 1:1200, 

1:2400, and 1:4800 dilutions for IgG and at dilutions of 1:250, 1:500, 1:1000, and 1:2000 for 

IgG subclasses 1 and 3 while IgM, IgG2, and IgG4 were assessed at 1:50 and 1:200 

dilutions. Malaria non-exposed European plasma was used as the negative control

After a ftirther four ten-minutes washes, the strips were treated with Enhanced 

Chemiluminescence reagents as per the manufacturer’s instructions. This involved mixing 

equal volumes of solutions A and B (pre-prepared by the manufacturer) and flooding the 

strips for about half a minute before drip drying the strips. The strips were then exposed to a 

photographic film in a dark room and the filmed developed. The highest dilution at which a 

positive reaction with a protein band was observed was taken as the titre for antibodies 

against that band
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Data analysis
A template of the protein bands separation was obtained by staining a gel after 

electrophoresis with 0.05% (w/v) coomassie blue in 20% (v/v) methanol / 10% (v/v) glacial 

acetic acid for five minutes, then destaining for 30 minutes in the same buffer without the 

dye. The gel was then dried onto a blotting paper. Molecular weight of each band was 

estimated from a plot of migration distance of the standard molecular weight markers 

against the log of the markers’ molecular weight.

The blots were examined visually and the protein bands with which each plasma reacted 

recorded by apparent molecular weight. Samples that reacted with less than four bands were 

re-assayed to rule out the possibility that this was due to technical flaws. The relationship 

between the numbers of episodes an individual suffered and the possession of antibody to the 

protein bands was assessed by a logistic regression with a correction for age. For the pooled 

plasmas, the blots were examined visually and the highest dilution at which a positive 

reaction with each band could be detected taken as the titre of antibodies against the 

particular band. The data was stored in Excel (Microsoft Corporation) and analysed in 

STATAver. 6

6.4 RESULTS

Antibody responses to un-infected red cell proteins. (Fig 6.1)

Reactivity against red cell components was established by electrophoresing and blotting un

infected cells proteins extracted by the same protocol as the infected cells. Two major bands 

stained strongly on the gel; a 220-250 kDa doublet and a band that migrated between 66-70 

kDa. When the blot was probed with pooled plasma, a weak reaction with the three bands and 

additional bands at about 100-110 kDa was observed. With washing that was more rigorous
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and a longer period of incubation of the blot membrane in blocking buffer, the background 

staining was reduced to minimal. The more rigorous washing process was therefore adapted 

for the actual study.

Figure 6.1 
A

A B <

im

Î

D
Mw
(KDa) ^

«--^-250-
-150-

-100  -

- 7 5 -

- 50 -

- 3 7 -

B

E C  D

A -  immune children pool -  P* survey 

B -  non-immune children pool - P ‘ survey 

’  -immune children pool  -  survey

D - non-immune children pool -2fttd

A) IgG responses to un-infected red blood cells proteins separated on a 5% gel. The membrane was 
subjected to either 3 washes of 10 minutes each in milk-free blotting buffer prior to probing with 

the secondary antibody, or B) 4 washes o f 10 minutes each

Individual reactivity to malaria antigens. (Fig 6.2)

Plasma from the first survey was first assayed individually for IgG at a dilution of 1:250. 

While non-immune European plasmas did not react with any of the protein bands, plasma 

from most of the study subjects reacted with one or more bands. The number of bands that 

each individual recognised increased with age (r^=0.226, P=0.010) but was not associated 

with protection against clinical episodes of malaria. However, it was observed that plasma 

from some older (>84 months), apparently immune (as judged by the lack of clinical episodes 

during the follow-up) individuals reacted with only a few bands. Individuals who were 

parasitaemic at the time of the first survey showed a higher, though not significant, tendency
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to recognise a larger number of bands (OR=1.510, Cl: 0.397-5.740, P= 0.545). Figure 6.2 

is a sample of some of the individuals who had strong responses to many of the bands 

contrasted with individuals who had poor responses.

Figure 6  .2
B

M W  (kDa)
1 2 3 4  5  6 7  8 9 10 11 12 1 2 3 4 5 6  7  8  9  10  11 12  13

- 2 5 0 -
- 1 5 0 -

m I

Sample Age Episodes Infection

1 3.5 1 -l-
2 7.5 1 +
3 1.5 0 -

4 19.5 0 -

5 1 5 0 -

6 1.0 0 -

7 2.0 0 -

8 5.0 1 4-
9 5.5 0 -

10 5.5 2 -

11 6.0 0 -

12 20.0 0 +

Sample Age Episodes infection

1 1.5 0 -

2 2.0 4 -

3 7.5 1 +
4 16.0 0 -

5 2.0 7 -

6 53.0 0 -t-
7 7.5 0 +
8 4.0 0
9 16.0 0 -
10 1.0 2 +
11 40.0 0 +
12 1.0 4 -
13 7.0 1 +
14 9.0 0 -

A sample o f blots o f individuals who had good responses (A) contrasted with individuals who 
reacted poorly with most o f the antigens (B). The tables shows the age, disease experience, and 
parasitological status during the survey of the plasma donors..
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Prevalence of antibodies against each protein band (Fig 6.3A)

14 protein bands ranging from 250 kDa to about 30kDa were recognised on the Coomasie 

blue-stained template and assigned a number based on their relative molecular. The 

prevalence of antibodies to each band varied considerably with some being recognised by 

majority of the plasma samples while others were only recognised by a few individuals. The 

majority of individuals recognised band(s) in the 200-250 kDa region. However, proteins 

above 200 kDa were poorly resolved and blotted. Therefore it is difficult to make any 

inferences on antibody responses directed against them. The prevalence of antibody response 

to the other bands that were frequently recognised were as follows: 110 kDa - 63%; 48kDa - 

61%; 36 KDa - 60%; 8 8  kDa -  50; 125kDa -  48%

Correlation between age, episodes, and reactivity to various antigens. (Fig. 

6.3B)

The prevalence of antibodies generally increased with increasing immunity and age although 

the association with age was significant (P<0.05) only in the case of response to the 250kDa, 

76 kDa, 43kDa, 37kDa, and 33 kDa bands. Since the period prevalence of episodes also 

decreased with age (younger than 8 years Vs 8  years or older, = 32.6, P>0.000), we 

corrected for age when assessing the protective effect of responses to each band. Only 

responses to the 192 kDa band were associated with protection against clinical episodes, 

although not significantly when age was taken into account (OR = 0.252 Cl: 0.061-1.047, 

P=0.058)

170



Figure 6.3

100% n
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□ - non-immune □ -seml-immune □ - immune
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70%

60%
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30%

20%

10%

0%
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 

□ 0-3yrs EU 3-6yrs □>6yrs

Band MW 
(kDa)

B1 -  250 
B2- 192 
B 3 -  167 
B 4 -  130 
B 5 -  100 
B 6 -  88 
B 7 -  75 
B 8 -  63 
B 9 -  56 
B lO -4 7  
B ll - 4 2  
B 1 2 -4 0  
B 1 3 -3 6  
B 14-33

A) The prevalence o f antibodies to various schizont antigens among the study subjects stratified by 
future disease experience and B) stratified by age. On the right are the molecular weights o f the 
numbered bands.
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Correlation between IgG levels in pooled plasma and immune status (Fig 6.4)

Children were categorised according to their disease experience in the first year of follow-up 

and plasmas from each category pooled. The relative amount of antibodies to each band in 

each pool was assessed by blotting with dilutions of the pool. All the six pools had high IgG 

titres (1:2400) against all the 14 bands. The first survey pool from immune children had 

higher titres responses to the 36 kDa band than the non-immune pool while the second survey 

immune pool had twice as high titres (4800 Vs. 2400 dilution factor) of antibodies to the 

100, 8 8 , 42, 40, 36, and 33 kDa bands as the corresponding non-immune pool.

Figure 6 . 4 0 episode 
A R  r  n

First survey

Second survey

37

One episode 
A B C I)

?  #

100 —  .

*

>2 episodes 
..A B D

Dilutions 
A - 1:600 
B -1:1200 
C - 1:2400 
D - 1:4800

IgG responses in pooled plasma from immune (0 episodes), semi-immune (1 episode), and non- 
immune ( > 2 episodes) children. The arrows indicate the responses that were reduced in non- 
immune children
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isotypes of antibodies directed against schizont antigens (Fig 6.5)

We did not detect IgM antibodies against schizont antigens in pooled plasmas in these study 

subjects. However, the anti-human-IgM HRP conjugate we used had not been validated for 

use in western blots, it may be that the failure to detect this isotype is due technical reasons 

rather than a real absence of the isotype.

IgGl and IgG3 dominated the response to majority of the bands. Although both non- 

immune pool and immune pools had IgGl antibodies to most of the bands, the titres were at 

least 5 times as high in the immune as they were in the non-immune pools (1:100 Vs 1:500). 

IgG3 responses to the 8 8 , 75, 63, 56, 40 and 36 kDa bands were virtually absent in the non- 

immune pool from the first survey while those to the 130, 100 and 47 kDa bands were much 

reduced in the same pool compared to the immune pool. There was an enhancement of IgG3 

response to 47, 40, and 36 kDa bands in the non-immune pools by the end of the first year of 

follow-up

IgG2 and IgG4 responses against most of the bands were absent in the two sets of pools that 

were assayed (non-immune first and second survey, immune first and second survey). Low 

titres (1:50) IgG2 and IgG4 response to the 250, 130, 100, 47 and 36 kDa bands were 

observed mainly in the immune pools.

6.5 DISCUSSION.

The identification of malaria parasite antigens that are putative targets for protective immune 

response against malaria is a prerequisite for the development of an effective malaria 

vaccine. Several methods including Western blots, ELISA, immunoprécipitation and more 

recently screening of expression libraries have been used in identifying important malaria
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antigens. All these techniques employ the use of “immune sera” as a screening reagent. 

Because distinguishing between immune responses that are markers of protection and those 

that are marker of exposure is difficult in malaria, the definition of immune sera especially in 

a natural setting is often imprecise. We have already described a longitudinal framework that 

was used to study various aspects of immune response to PIESA and through which we 

obtained precise details about individuals’ disease experience. We therefore considered the 

same framework appropriate for examining immune responses to other schizont- associated 

antigens.

Plasma from 127 individuals in whom malaria episodes were actively monitored for one year 

was assayed for antibodies to schizont antigens using Western blots. First, we assessed the 

reactivity of the plasmas with un-infected red cells. Weak reaction against a 220-250 kDa 

doublet band, 110 kDa, and 75 kDa band was observed. There is evidence to suggest that 

individuals in malaria endemic areas may develop antibodies against components of the red 

cell membrane (Brown, et a l, 1986). Antibodies against 80 kDa, 70 kDa, 40 kDa, 28kDa red 

cell polypeptides and the a  subunit of spectrin have previously been observed in malaria- 

exposed individuals (Berzins, et a l, 1983). It likely that the large doublet band observed in 

this study corresponds to spectrin. These reactions were reduced to a minimum by increasing 

the incubation time with blocking buffer and more rigorous washing of the blot membrane 

before probing with the secondary antibody.
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Approximately 14 bands ranging from over 250 kDa to about 30 kDa were resolved on the 

gel. The prevalence of antibodies against these bands varied considerably with some bands 

being reacting with up to 60% of study subjects while others reacted with only a few 

individuals. Proteins of molecular weight above 200 kDa were poorly resolved and blotted 

and it is not possible to make much inference about them. However, responses to PIESA, 

some of which fall within this molecular weight range, were studied by other methods as 

already described. The prevalence of antibodies to most of the bands increased with age and 

with increasing immunity, but only the prevalence of antibodies to a 192-kDa protein was 

associated with protection against clinical malaria albeit not significantly. This molecular 

weight corresponds to the molecular weight of merozoite surface protein -1 (MSP-1), a 

protein that has been identified as a putative target for protective responses against malaria. 

However, it is not possible to say if the band seen here corresponds to MSP-1 without further 

work. The lack of association between protection and responses to all the other the antigens is 

consistent with reports from other studies which showed that responses to many malaria 

parasite antigens are not associated with protection (Hoffrnan, et a l, 1987; Marsh, et a l, 

1989; Thelu, et a l, 1991; Miller, et a l, 1997).

Most of the individuals in this study had antibodies to one or more protein bands, indicating 

that they had been exposed to malaria parasites sometime in their life. As expected, the 

number of bands that an individual recognised increased with age. Age/exposure dependent 

acquisition of antibodies to various malaria antigens has been previously described in several 

studies. However, there were older (above 10 years of age) individuals who despite their age 

had antibodies to only a few of the bands. Plasma samples from these individuals were 

assayed along with other plasma that exhibited a broad range of responses and in addition, all 

samples that had antibodies to less than four bands were re-assayed. No difference was

176



observed between results from the first and second runs. Thus, the lack of responses observed 

in these plasmas was probably not due to a technical flaw.

The observation that these individuals were nonetheless immune to malaria disease (they did 

not present with a clinical episode during the follow-up period) supports the assertion that 

many of the responses measured here may be irrelevant to protection against clinical malaria. 

It should also be borne in mind that some protective responses against malaria may be 

directed against conformational epitopes on native proteins while proteins on a Western blot 

are in denatured form. Hence, the profile of responses to blotted proteins is not necessarily a 

good reflection of the individual’s immune status. In addition, the domination of responses to 

some of the bands by IgG3 suggests the responses might be short-lived and hence their 

absence could reflect a lack of recent re-stimulation by recent malaria parasite infections. In 

this study, individuals who had concurrent infections during the cross-sectional survey 

showed a higher, albeit not significant, tendency to have a wider range of responses than 

those who were aparasitaemic (see analysis in chapter 7).

We categorized individuals as “immune”, “semi immune”, and “non-immune” according to 

their clinical malaria experience over the study period and pooled the plasmas of individuals 

in each category. We also pooled the corresponding plasmas from a second cross-sectional 

survey carried out a year later. The aim of this was to look for responses that were common 

to the individuals in each pool. The pools were titrated for IgM, IgG, and IgG isotypes 

against the blotted proteins. We failed to detect IgM in any of the pools. In the light of 

previous reports of high anti-malaria IgM levels in individuals from malaria endemic areas 

(Turner and Voiler, 1966; Voiler, et a l, 1971 ), it is unlikely that all the individuals in this 

study lacked anti-malaria IgM and more likely that our failure to detect IgM was due to the
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some technical problem with the secondary antibody which had not been validated for use in 

Western blot. Quantitative and qualitative differences in the IgG and IgG subclass responses 

to the blotted proteins were observed between the immune and non-immune pools but less 

between immune and semi-immune pools. IgG titres to six bands were twice as high in the 

pooled second survey plasma from immune children compared to the levels in the 

corresponding non-immune pool.

Cytophilic antibodies dominated responses against most of the bands. Although all the pools 

had IgGl antibodies to many of the bands, the titres were much higher in the immune 

compared to the non-immune pools. IgG3 responses to many of the bands were either 

markedly reduced or absent in non-immune pool. Poor IgG2 and IgG4 responses were 

observed in both immune and non-immune individuals. This skewed responses to schizont 

antigens towards cytophilic IgG antibodies have been reported for responses to ring-infected 

erythrocyte surface antigen (RESA) (Dubois, et ah, 1993; Beck, et a l, 1995), merozoites 

surface antigens I& 2 (Taylor, et a l, 1995; Rzepczyk, et a l, 1997), schizont antigens 

(Thelu, et al., 1991; Nguer, et a l, 1997); and PIESA (Piper, et a l, 1999) and have been 

associated with protection against malaria (Salimonu, et a l, 1982; Aribot, et a l, 1996; 

Ferreira, et a l, 1996).

An antibody dependent cellular inhibition (ADCCI) model in which cytophilic antibodies 

against merozoites attach to monocytes and mediate reversible inhibition of ring stage 

trophozoites has been proposed by Bouharoun-Tayoun et a l (1992). In this model, non- 

cytophilic IgG2 and IgG4 are said to antagonistic to the activities of the cytophilic subclasses. 

It is therefore possible the cytophilic responses that were increased among the immune 

individuals are markers of immunity rather than just exposure. Thus, further work could
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focus on identifying the proteins corresponding to bands that reacted strongly with the 

cytophilic antibodies

In this study, we have identified a band of approximately! 92 kDa protein that might 

correspond to antigens that are targets for protective responses against malaria. We have 

also shown that responses to the majority of schizont antigens are dominated by antibodies of 

the cytophilic subclasses (IgGl and IgG3). Individuals who are immune to clinical episodes 

to malaria tend to have higher and qualitatively different response to certain schizont antigen 

than non-immune individuals. Some of the bands against which the responses were directed 

have weights corresponding to those of antigens cited elsewhere in the literature. Antibodies 

to a 96 kDa antigen have been reported to be associated with protection against malaria 

(Nkuo-Akenji, et a l, 1993). The 33, 36, 42, and 47 kDa bands have molecular weights that 

correspond with fragments of the merozoites surface proteins MSP-1 and MSP-2, antibodies 

to which are associated with protection against malaria (Holder, et a l, 1985; Riley, et a l, 

1992). It is not possible to identify the proteins that each band represents without further two- 

dimensional separation and proteomic analysis. Identification of the proteins corresponding 

to these bands could form the basis of further research work.
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CHAPTER?

THE RELATIONSHIP BETWEEN PARASITOLOGICAL 
STATUS AND ANTIBODY RESPONSES TO PIESA AND OTHER 
SCHIZONT ANTIGENS

7.1 INTRODUCTION

Although evidence from experimental infections in animal models suggests that chronic malaria 

infections could prevent super-infection by parasites of the same strain or species (Sinton, 1939; 

Singh and Singh, 1940), the evidence for the existence of such immunity in humans is scanty. 

Results from recent studies suggest that in humans, the multiplicity of the infection (Al-Yaman, 

et a l, 1997; Smith, et a l, 1999) or the concurrent presence of variant-specific antibody 

responses to PIESA (Bull et al, in prep.) rather than the chronic infection per se may be the 

important factors in determining protection against super-infection. The mechanism that would 

underlie such type of immunity is yet to be established. Using data obtained from the 

longitudinal study described earlier on in this thesis, I explored the influence of parasitological 

status at the beginning of a period of active malaria episode surveillance on the magnitude and 

protective efficacy of pre-follow-up responses to PIESA and other schizont antigens.

7.2 STUDY DESIGN

A cross-sectional survey was carried out in September 1998 prior to a 2-year active malaria 

episode surveillance. During the survey, the parasitological status of 256 children under the age 

of 10 was assessed by microscopy. At the same time, a plasma sample was obtained from the 

children and assayed by flow cytometry for anti-PIESA antibodies against a panel of 9 isolates.
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The longitudinal framework within which the clinical episode surveillance was carried out is 

described in fuller details in chapter 2 while the details of the assessment of anti-PIESA response 

by flow cytometry are given in chapter 5. I examined whether being parasitaemic at the cross- 

sectional survey influenced the protective efficacy of antibody responses to various PIESA 

variants. In addition, I assessed the effect of being parasitaemic on the protective efficacy of 

antibody responses to schizont antigens separated on a western blot described in chapter 6.

Data analysis
All the data analysis was carried out using STATA 6.0. Various relationships between 

parasitological status, anti-PIESA responses, or response to schizont antigens, and the odds of 

presenting with at least one clinical episode of malaria during the follow-up were examined 

using logistic regression models. To assess the interactions between these parameters, they were 

first converted into binary categories of positive and negative, and then interaction variables 

were generated by multiplying the parameters and incorporated into logistic regression models. 

The following associations were examined:

1. The effect of parasitological status on the breadth of each child’s antibody repertoire (as 

determined by responses to at least one of the test isolates, or four specific protein bands 

on the blot in the case of schizont antigens). Adjustments were made for age and the 

children’s subsequent disease experience.

2. The association between parasitological status and the prevalence of antibodies to each 

of the test isolates or protein bands adjusted for age and the children’s subsequent disease 

experience
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1. The association between parasitological status and protection against clinical episodes by 

antibodies to PIESA and schizont antigens adjusted for age and other apparently 

protective responses and interaction.

7.3 RESULTS

Prevalence of microscopically-detectable Infections. (Fig 7.1)

89/256 (34.8%) children had a microscopically-detectable infection during the cross-sectional 

survey of these 89 children, 19 were febrile (axillary temp. >37.49) and were treated with 

Fansidar (sulphadoxine / pyrimethamine). The prevalence of infections increased from birth to a 

peak among two year old children then declined slightly among the three and four year old 

children after which it continued to increase with age (OR - 1.76, 95% Cl. 1.064 -  2.913, 

P=0.028)

Figure 7.1
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Association between parasitological status and an individual’s repertoire of anti- 

PIESA specificities

Having anti-PIESA antibodies to at least one of the test isolates was taken as an indicator of the 

children’s breadth of anti-PIESA antibody repertoire. Being parasitaemic was positively 

associated with a wider repertoire of anti-PIESA response among the future controls (OR -  

35.373, 95%CI: 4.465 -  280.227, P=0.001) but was negatively associated (OR - 0.058, 95%CI: 

0.005 -  0.603, P=0.017) among the future cases.

Association between parasitological status and anti-PIESA responses (Table 7.1)

Among the future controls, being parasitaemic was positively associated with the odds of having 

anti-PIESA responses to each of the test isolates. Among the future cases, parasite positivity was 

associated with reduced odds of being antibody positive and this reduction was significant in two 

instances. Fever status did not influence the associations above. A summary of the odds ratios is 

given in table 7.1. Interactions with responses to isolate B7 are not reported because their low 

prevalence among the study children resulted in unrealistic estimates of odds ratios.
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Table 7.1

Isolate

Future controls 

Odds ratio (95% Cl) P

Future cases 

Odds ratio (95% Cl) P

A4 4.357 (1.926-9.851) <0.001 0.200 (0.061 -  0.660) 0.008

ITGIC15 3.968 (1.786-8.818) 0.001 0.518 (0,162-1 .657) 0.268

4518 2.918 (1.162-7.331) 0.023 0.586 (0.160-2.137) 0.418

4451 3.247 (1.326-7.956) 0.010 0.987 (0.253-3.853) 0.984

1776 9.717 (3.536-26.704) <0.001 0.265 (0.059-1.186) 0.082

3030 13.451 (4.823-37.516) 0.001 0.203 (0.054 -  0.730) 0.019

1509 3.982 (1.630-9.720) 0.002 0.177 (0.045 -  0.693) 0.013

The odds ratio o f children having anti-PIESA responses to the test isolates i f  they were parasite 

positive adjusted for age and stratified by future disease experience.

Association between parasitological status and protection against clinical 

episodes of malaria by anti-PIESA antibodies . (Table7.2)

In chapter 5, I reported that only responses to isolate 1776 were associated with protection 

against clinical episodes of malaria after correcting for age and responses to other isolates (Fig. 

5.4A). Here I have re-analysed the data to test for the influence of concurrent parasitaemia on the 

protective efficacy of anti-PIESA responses. Having both parasites and antibodies to isolates 

1509, 3030 and A4 was significantly associated with protection against episodes in the first year 

of follow-up. However, only the interaction between being parasitised and having responses to 

isolate 1509 remained significantly associated with protection even after correcting for age and 

the other apparently protective interactions. Antibodies to isolate 1509 and being parasitaemic
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were each independently associated with increased susceptibility to clinical episodes, (table 7.2). 

Interaction between parasites and responses to isolate ITGIC15 was found to be associated with 

protection in the second year. Having responses to isolate 1776 and concurrent infection was 

associated with protection against clinical episodes, though not significantly (OR -  0.264, 95% 

Cl: 0.061-1.150, P= 0.076).

Association between parasitological status and antibody response to malaria 

antigens on a Western Blot

In chapter 6, I examined the association between possession of antibodies to various schizont 

antigens separated on a Western blot and protection against clinical episodes of malaria. Only 

responses to a 192 KDa protein were significantly associated with protection. Here I have 

examined the response data from chapter 6 to determine if there is a protective interaction 

between concurrent malaria infection and response to schizont antigens. I arbitrarily chose the 

ability to react positively with at least four protein bands as a measure of the breadth of 

responses to schizont antigens. Being parasitaemic was associated with an increased breadth of 

response, albeit not significantly (OR- 2.251, 95% Cl: 0.870 -  5.823, P=0.094) in future controls 

but not in future cases (O R -0.856, 95% Cl: 0.123 -  6.111, P=0.885). Although responses to 

some of the schizont antigens showed a slight tendency to be raised while others tended to be 

reduced among the parasite positive children, none of the associations was statistically 

significant. There was no significant interaction between responses to any of the 14 protein 

bands described earlier on and parasitological status in relation to protection against subsequent 

clinical episodes.
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Table 7.2 A

Isolate Parameter Adjusted for age P Adjusted for age and other 
responses. $

P

A4 Parasite + Abs 
Abs only 
Parasites only

0.200 (0.062-0.647)
1.724 (0.847-3.500) 
1.844 (0.878-3.878)

0.007
0.133
0.106

0.343 (0.095-1.256) 
1.784 (0.872-3.650) 
3.097(1.029-9.319)

0.106
0.113
0.044

3030 Parasite + Abs 
Abs only 
Parasites only

0.194 (0.522-0.722)
1.784 (0.914-3.480) 
2.744 (0.923-8.161)

0.014
0.090
0.069

0.308 (0.075 -1.264) 
1.930 (0.972-3.832) 
3.285 (1.082-9.971)

0.102
0.060
0.036

1509 Parasite + Abs 
Abs only 
Parasites only

0.128 (0.342-0.476)
2.276 (0.959-5.399) 
1.702 (0.866-3.345)

0.002
0.062
0.123

0.196 (0.048-0.910) 
2.626 (1.066-6.472)
3.057 (1.021-9.154)

0.023
0.036
0.046

B

ITGIC15 Parasite + Abs 

Abs only 

Parasites only

0.177(0.049-0.644)

0.913 (0.434-1.923)

2.194 (1.027-4686)

0.009

0.811

0.043

The odds ratios (95% Confidence interval) o f a child suffering a clinical episode during the first (A) 
and second year (B) o f follow-up in relation to parasitisation and anti-PIESA responses. Abs ~ 
antibodies, f  Adjusted for responses to the other apparently protective interactions including 
responses to isolate 1776. No adjustment for other responses was necessary in table B. Significant OR 
are highlighted in bold font. Responses where no significant associations were observed are not 
included.
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7.4 DISCUSSION

Immunity to malaria is usually not complete and many people in endemic areas often harbour 

chronic asymptomatic infections (Marsh, 1992). Data fi*om animal malaria models suggest that 

chronic infections might prevent the establishment of super-infections in a strain or species- 

specific manner (Sinton, 1939; Singh and Singh, 1940). Although the idea of “premunition” in 

malaria dates back to 1935 when Sergent and Parrot coined the term for this type of immunity, 

the mechanisms underlying premunition remain poorly understood. Data on premunition in 

humans is scanty although the available data suggests that it may be associated with the number 

of clones or “strains” in a chronic infection (multiplicity) rather than the infection per se (Al- 

Yaman, et al., 1997; Smith, et al., 1999). The multiplicity of an infection can be defined with 

respect to polymorphic antigens such as MSA-1, MSA-2, and PIESA. Unpublished observations 

by Bull et al suggest that chronic infections might interact synergistically with response to some 

PIESA variants in the protection against clinical episodes of malaria. I have examined data on 

responses to PIESA and other schizont antigens separated on a Western blot jftom 256 and 126 

children from Kilifi respectively to see if such an interaction would be evident.

89/256 (35%) children were parasitaemic at the pre-follow-up survey. The increase in parasite 

prevalence with age appeared to be biphasic with a short peak occurring in the two-years age 

group and a second one in the group of above 7 years in age. The rise in prevalence to about 70% 

among children aged 7-10 years is consistent with findings of a previous larger study, involving 

2346 individuals resident in this same study area, which reported an overall prevalence of 50% 

(Lowe, 1999). The peak at two years is difficult to explain although it could simply be due to the 

relatively small sample size. 19 children were febrile in addition to being parasitaemic. Although
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this number might be too small to base any firm conclusions on, fever status did not significantly 

affect either future disease experience or levels of antibodies to PIESA and other schizont 

antigens. As such, we did not attempt to distinguish between chronic and acute infections in the 

analyses. The febrile children were treated with anti-malarial drugs. It is not clear how 

elimination of the parasites affected the development of concomitant immunity. However, it 

should, be noted that even children who did not receive anti-malarial drugs during the survey 

might still have spontaneously cleared the infections eventually. Thus, it might not be possible 

here to talk about premunition in the strict sense of a chronic infection preventing super

infections; nonetheless, the protective effects of chronic infections in animal models have been 

shown to linger on for even seven months after spontaneous or chemotherapeutic clearance of 

the infection (Sinton, 1939; Singh and Singh, 1940).

There are several ways in which chronic malaria infections might appear to be associated with 

protection against malaria super-infections and disease. First, chronic infections might in 

themselves not be protective and instead the ability to maintain them might reflect well- 

developed malaria immunity. Second, chronic infection might cause a generalised non-specific 

up-regulation of responses against malaria antigens. Third, chronic infections might induce or 

boost protective variant-specific responses to polymorphic antigens such as PIESA and prevent 

super-infection by parasites bearing homologous antigenic variants. Although as stated earlier, 

we cannot verify that the infections seen here were strictly chronic, the observation in this study 

that merely being parasitaemic was actually associated with increased susceptibility to clinical 

episodes rather than protection suggests that the first possibility cannot explain premunition. This
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observation corroborates with observations in other studies both in Kilifi (Bull, unpublished obs.) 

and elsewhere (Al-Yaman, et al., 1997; Smith, et al., 1999)..

In order to explore the second possibility, I examined the effect of parasitisation on an 

individual’s repertoire of antibody to PIESA variants and to other schizont antigens in two ways. 

First, by examining the odds of having anti-PIESA antibodies to at least one of the test isolates, 

or having antibodies to at least four of the 14 schizont protein bands seen on a western blot 

among parasitised children compared to non-parasitised children. Second, I examined the odds of 

having antibodies to each of the nine test isolates and 14 protein bands. In both analyses, only the 

odds ratios of having anti-PIESA responses to the test isolates were apparently increased by the 

presence of parasites and this was only among children who did not subsequently present with 

clinical episodes during the first year of follow-up. These data clearly show that among the 

children in this study, being parasitised was not necessarily accompanied by a generalised up- 

regulation of immune responses to all malaria antigens. There is nonetheless a group of children 

within whom having microscopically detectable infection might have resulted in the induction or 

boosting of variant-specific responses to PIESA. This observation is consistent with the results 

discussed in chapter 4 of this thesis, where both asymptomatic and symptomatic infections were 

shown to contribute to the acquisition of new anti-PIESA specificities.

Given the variant-specificity of responses to PIESA the question of how an infection might 

induce response to an apparently heterologous set of variants has been a difficult one to answer. 

A possible explanation is that there is a degree of specificity overlap in the PIESA expressed in 

the chronic infection. Alternatively, chronic infections may be in the host for a sufficiently long
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period to allow the expression of a large number of PIESA variants, including those that are 

cross-reactive with the test variants, through antigenic variation. In view of this up-regulation, 

one would expect to see an increase in prevalence of anti-PIESA response to any given set of 

isolates in plasma samples taken after a transmission season when nearly all children develop 

detectable infections. The observed loss of anti-PIESA specificities (chapter 4) in children 

sampled within three months of a peak transmission period (May - June) therefore suggests 

that these “heterologously” induced responses are short-lived. On the other hand, the 

observations described in chapter 3 suggest that responses to homologous parasites persist for 

more than 3 months an acute episode.

There is strong evidence from the results reported in chapter 5, work done in Kilifi (Bull, et a l, 

1998), in the Gambia (Marsh, et a l, 1989) in Ghana (Dodoo, et a l, 2001) and in the Sudan 

(Giha, et a l, 2000) to suggest that responses to PIESA protect against malaria disease. Thus, the 

question that followed on from the observations above is whether the raised anti-PIESA 

responses in the parasitaemic children translated into apparent protection against clinical 

episodes during the follow-up. Except for response to isolate 1776, possession of anti-PIESA 

response to the other isolates was not independently associated with protection. In fact, responses 

to isolate 1509 were independently associated with increased susceptibility to disease episodes. 

On the other hand, possession of antibodies to isolate 1509 and being concurrently parasitised 

was associated with a nearly 8-fold reduction in the odds ratio of presenting with a clinical 

episode in the first year of follow-up. Being parasitised was independently associated with a 

three-fold increase in the odd ratio of suffering a clinical episode. Concurrent parasitisation and 

possession of antibodies to isolate ITGIC15 was associated with protection in the second year.
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These data suggest that being parasitised could reflect poor malaria immunity in some children; 

such children have increased risk of becoming ill with malaria sometime during follow-up. These 

children appear to have reduced anti-PIESA responses to the test isolates. It not clear whether 

these poor responses were the result or the cause of their poor immune status. The finding that 

having anti-PIESA antibodies to some of the isolates in the absence of a concurrent infection was 

associated with increased odds of experiencing a clinical episode of malaria is interesting. 

Previous studies have shown that response to only some rather than all isolates appear to be 

associated with protection against clinical episodes (Marsh, et al., 1989; Giha, et al., 2000; 

Dodoo, et al., 2001) but no previous studies have shown that response to some isolates might 

actually be adversely associated with malaria disease. This is possibly because in the other 

studies no adjustment was made for parasitisation in the analyses. The mechanism by which such 

antibodies might make one susceptible to malaria requires further studies to unravel

Although anti-PIESA responses to isolates such as 1776 might be independently associated with 

protection, responses to other isolates such as 1509 are only associated with protection in the 

presence of a concurrent infection. There is evidently some synergistic interaction between other 

immune responses induced by the infection and the response to PIESA in mediating protection 

against malaria. The fact that this interaction was apparent with anti-PIESA response to only 

some and not all the isolates suggests that even the other responses might be directed against 

polymorphic targets. Thus, only responses to a particular combination of PIESA variant and 

variants of the other targets are protective.
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In summary, these data show that parasitisation has an effect on the level of anti-PIESA 

antibodies, but this does not necessarily translate into protection against malaria. Some PIESA 

response may be interact with other responses induced by concurrent parasitisation but the 

mechanism of how this happens is not clear. There is therefore need to take into account possible 

confounding effects of parasitisation when examining the protective efficacy of responses to 

PIESA and other antigens.
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C H A P TE R S

SUMMARY

In this thesis, I have examined the natural history of humoral responses to the parasite-induced 

antigens on the surface of red cells infected by mature stages of P. falciparum (PIESA) and to 

other schizont antigens. The justification for carrying out these studies lies in the fact that 

despite the increasing evidence that variant-specific antibody responses to PIESA may be 

protective against malaria (Marsh, et al., 1989; Ailes, et al., 1998; Bull, et al., 1998; Giha, et al., 

2000; Dodoo, et al., 2001), the natural history of these responses is still poorly documented. 

This is partly because the longitudinal studies required to provide these data are difficult and 

costly to set up. The KEMRI/Wellcome Trust Centre in Kilifi has over time acquired the skills 

and facilities to set up longitudinal frameworks within which sufficiently reliable data can be 

obtained. Thus, it is an appropriate set-up in which to carry out these studies.

Materials and Methods

Prior to the actual studies, I carried out experiments to validate the methods that I intended to 

use. This was necessary in order to determine the assays’ optimum conditions and level of 

inherent variations. Two methods were used to study responses to PIESA: agglutination and 

flow cytometry. Agglutination assays have been reported to be susceptible to inter-assay 

variations (Aguiar, et al., 1992; Reeder, et al., 1994; Bull, et al., 1999), partly because 

agglutinates are scored subjectively. The scoring method used in these studies was shown to be 

highly reproducible but some degree of inter-assay variation was still observed between 

duplicate assays confirming the inherent variability of agglutination assays. I made several 

modifications to the two methods in order to facilitate the comparative experiments carried out
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these studies. First, I used dried agglutination smears, which give similar results to the standard 

wet preparations (Bull, et al., 1999) but have a much longer storage span than the latter. Second, 

in order to circumvent the problems associated with poor recovery and maturation in in-vitro 

culture of cryopreserved ring trophozoites, I adopted the use of cryopreserved schizonts as 

sources of parasite materials for the studies against PIESA responses. Using mixed agglutination 

assays (Newbold, et al., 1992) and by comparing agglutination and flow cytometry profiles of 

frozen and fresh parasites I showed that freezing schizonts did not significantly alter their PIESA 

phenotype.

Kinetics of anti-PIESA responses to homologous Parasites

Most of the studies on anti-PIESA responses to homologous parasites are restricted to the first 

few weeks after an episode (Forsyth, et al., 1989; Marsh, et al., 1989; Aguiar, et al., 1992; Iqbal, 

et al., 1993; Bull, et al., 1998). No previous study has tracked the rise and decay of the responses 

over a longer period. I monitored the kinetics of anti-PIESA responses for 12 weeks after acute 

episode of malaria. Agglutination antibody levels were monitored for 6 weeks after the episode 

in 26 children and for 12 weeks in another 22 children. The results were consistent with the 

previous reports that children mount anti-PIESA responses within two weeks of a malaria 

episode (Forsyth, et al., 1989; Marsh, et al., 1989; Aguiar, et al., 1992; Iqbal, et al., 1993; Bull, et 

al., 1998). The majority of children were able to sustain the high antibody levels for over 12 

weeks. However, a number of children showed a rapid decay in responses after the peak in the 

second week. This could be due to either parasite or host-relate factors. A larger study is needed 

to confirm these observations and to examine other immune responses to malaria in such 

children.
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Analysis of the isotype profiles of responses from 11 of the children showed that they were 

typical of a primary response, with IgM dominating the early part of the responses. This is 

consistent with the idea that children are not infected by isolates against which they already have 

anti-PIESA responses (Bull, et al., 1998). As with IgG responses to other malaria antigens 

(Beck, et a l, 1995; Taylor, et a l, 1995; Rzepczyk, et a l, 1997), IgG responses to PIESA appear 

to be strongly skewed toward IgG3. Although the number of children where isotype analysis was 

done was small and therefore no inferences can be reliably made, there is a hint that the failure to 

sustain high antibody titres in some children may be due to a failure to switch from the IgM to 

IgG. There is clearly a need for further work to confirm the profiles seen here and to address the 

question of how malaria parasites influence isotype switching in B-cells.

The dynamic of the acquisition of Anti-PIESA antibodies over time

It has been suggested that the development of immunity to malaria might involve the 

accumulation of antibody specificities to the locally circulating repertoire of PIESA variants 

(Gupta and Day, 1994). However, the process by which these specificities are accumulated is 

poorly documented. I used agglutination assays and flow cytometry to explore the dynamics of 

the accumulation of anti-PIESA specificities in children in Kilifi. All the children showed 

considerable variation in their anti-PIESA specificity repertoire over a period of one year. Both 

the loss of pre-existing specificities and acquisition of novel ones were observed., Evidently, 

antibodies to some PIESA variants are accumulated more rapidly than others are and the rate of 

accumulation appears to be a function of how often the variant is encountered in the transmission 

system. Although both symptomatic and asymptomatic infections appear to be important in the
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acquisition of novel specificities, symptomatic infections might be more efficient in maintaining 

detectable levels of specific response. The briefiiess of anti-PIESA responses seen in these 

studies might reflect the domination of the responses by IgG3 antibodies, which have a shorter 

half-life than the other IgG sub-classes. Whether after this apparent loss of antibodies, the 

children are able to mount good memory responses to future infections by a homologous PIESA 

variant is a question that needs to be addressed.

Protection against clinical episodes of malaria by anti-PIESA responses

In view of the variant-specificity of anti-PIESA responses (Newbold, et al., 1992), the apparently 

heterologous protection against malaria episodes by anti-PIESA antibodies to randomly selected 

isolates reported in studies in the Gambia (Marsh, et al., 1989), the Sudan (Giha, et al., 2000) and 

in Ghana (Dodoo, et al., 2001), was rather surprising and difficult to explain. I attempted to 

address this question in this thesis first by looking for evidence of the occurrence of such 

protection among children in Kilifi. Second, I considered the relationship between the 

association of anti-PIESA responses to an isolate and the relative fi*equency with which the 

isolate was encountered in the transmission system in Kilifi. The results supported the findings 

from the studies cited above, that responses to some but not all isolates may be associated with 

protection against malaria episodes. This study did not resolve the question of the underlying 

mechanism. However, the results showed that in Kilifi the association between protection and 

anti-PIESA responses to a given isolate was not necessarily correlated with the relative frequency 

with which the isolate was encountered in the transmission system.
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Assessment of the protective efficacy of responses to schizont antigens using 

Western blots

It is certain that besides PIESA, there are other malaria antigens that are targets for protective 

responses. To identify such antigens and responses requires precise definition of the immune 

status of the sera used in the screening process. The longitudinal framework set up to look at 

responses to PIESA provided a detailed history of disease experience of the study subjects during 

the follow-up period. This history was taken to be a good reflection of the subjects’ immune 

status. Thus, the framework also provided an opportunity to explore the association between 

responses to other schizont antigens and protection against clinical episodes of malaria. When 

plasma samples from 126 individuals in the longitudinal surveillance were probed for antibodies 

against schizont antigens on a Western blot, only responses to a 192 kDa antigen band were 

found to be associated with reduced odds of disease episodes. More work is required to identify 

the proteins represented by this band. The Tack of association between responses to most of the 

schizont antigens and protection is consistent with the idea that responses to the majority of 

malaria antigens are simply evidence of exposure, and do not confer protection. Some of this 

responses might be mechanisms by which parasites subvert protective responses (Hoffinan, et 

al., 1987; Marsh, et al., 1989; Thelu, et al., 1991; Miller, et al., 1997).

Individuals were classified as immune, semi-immune, non-immune, and plasmas from each 

group pooled. Isotype analysis of the responses was done on the plasma pool. Cytophilic IgGl 

and IgG3 antibodies dominated the responses to all the bands. The titres of both subclasses were 

higher in the immune pool than in the non-immune pool. IgG3 responses to several of the bands 

were virtually absent in the non-immune pool. In view of the reported association of cytophilic
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antibody response with protection against malaria (Salimonu, et a l, 1982; Aribot, et a l, 1996; 

Ferreira, et a l, 1996), it is possible that the IgG3 responses that were exclusively seen in pooled 

immune plasma are markers of immunity rather than just exposure. Thus, their target antigens 

could be the focus of future studies.

The influence of parasitological status on the levels and protective efficacy of 

responses to PIESA and other schizont antigens

It has been speculated for sometime now that chronic infections may protect against super

infections but recent studies suggest that in humans, the protection is related to the multiplicity of 

infection rather than the infection per se (Smith, et a l, 1999). A finding of particular interest in 

this study and which has also been observed in another study in Kilifi (Bull, in prep.) is the 

interaction between concurrent infections and anti-PIESA responses in the protection against 

clinical episodes. Although being parasitaemic was associated with raised levels responses to 

anti-PIESA and increased range of responses to other schizont antigens, this was probably not 

the reason for the protection as having anti-PIESA responses to some of the isolates in the 

absence an of infection and vice versa was in fact associated with increased risk of subsequent 

clinical episodes of malaria. The observation that the protection conferred by the interaction 

between the two parameters was restricted to anti-PIESA responses to one rather than all the test 

isolates suggests that there may be some variant-specific synergy between anti-PIESA responses 

and responses to other polymorphic malaria antigens.

Final comments

This thesis adds strength to our current knowledge about immune responses to PIESA. In 

addition, it has revealed several aspects that were not previously documented. The conservation
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of PIESA phenotype in cryopreserved schizonts; the kinetics and isotype profiles of anti-PIESA 

responses in children; the dynamics of anti-PIESA responses over a long period in children 

resident in an area of moderate malaria transmission and the protective interaction between 

infections and anti-PIESA responses to some isolates. The numbers of study subjects involved in 

some of the analyses were rather low and a larger study might be necessary to confirm the 

current conclusions. While this thesis adds to our general understanding of anti-PIESA 

responses there is clearly a need for further research aimed at understanding the underlying 

mechanisms.
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Appendix I

SOURCE OF REAGENTS AND CONSUMABLES

PROCEDURE REAGENT SUPPLIER

Blood collection Heparin LEO LABS LTD, Bucks, UK

Parasite culture 
and

cryopreservation

Malaria non-immune sera BLOOD TRANSFUSION SERVICES 
Southmead Road, Bristol, UK

Lymphoprep NYCOMED PHARMA AS, Oslo, Norway
Plasm agel SIGMA ALDRICH CO LTD, Dorset, UK
Hypoxanthine SIGMA

RPMI 1640 GIBCO-BRL LIFE TECHNOLOGIES LTD, 
Paisley, UK

Hepes buffer GIBCO
Gentamicin sulphate GIBCO
L-glutamine GIBCO
Glucose BDH (Merck Ltd), Leicester, UK
Sodium hydroxide BDH
Aphidicolin BDH
Sodium lactate BDH
Giem sa BDH
Immersion oil BDH
Glycerol BDH
Sodium dihydrogen phosphate BDH
Potassium  chloride BDH
Methanol BDH
Sodium chloride BDH
Special culture gas mixture BOO (K) LTD, Nairobi, Kenya

Agglutination

Ethidium bromide SIGMA
Acridine orange SIGMA
DAPI SIGMA

Petroleum jelly JOHSON & JOHNSON (K) LTD, Nairobi, 
Kenya

Flow cytometry

Bovine serum  albumin GIBCO
Phosphate buffer saline tablets BDH
FITC-conjugate sheep
anti- human IgM, IgG & IgG subclasses BINDING SITE, Birmingham, UK

Ethidium bromide SIGMA
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SOURCE OF REAGENTS AND CONSUMABLES conUd...

PROCEDURE REAGENT SUPPLIER

Anti-proteases - TLCK, TPCK, PMSF, 
antipain, Aprotinin, leuptin, chymostatin SIGMA

Tris (trizma base) SIGMA
Sodium dodecyi sulphate (SDS) SIGMA
Coom asie blue BDH
p - M ercaptoethanol BDH
Tween -  20 BDH
Glycine BDH

HRP-conjugate rabbit Anti-human IgM, IgG & 
IgG - Subclasses DAKO, Cambridgeshire, UK

Protogel acrylamide SIGMA
Western Blot Fat free milk PREMIER BEVERAGE, Stafford, UK

Photography film AMERSHAM LIFE SCIENCE LTD, 
Buckinghamshire, UK

High precision Molecular weight markers AMERSHAM LIFE SCIENCE
TEMED GIBCO
Ammonia persulphate GIBCO

HCI FISHER SCIENTIFIC UK,
Leicestershire, UK

Acetic acid FISHER SCIENTIFIC

Nitrocellulose m em brane PHARMACIA BIOTECH, 
Hertfordshire, UK

ECL R eagents BOERHINGER MANNHEIM, 
Sussex UK
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CONSUMABLES

ITEM SUPPLIER

Culture flasks 50ml, 250ml BECTON DICKINSON, France

microtitre trays u-bottom well BECTON DICKINSON

Syringes BECTON DICKINSON

Needles BECTON DICKINSON

Microtainer Serum Separator tubes BECTON DICKINSON, New jersey, USA

Aspirating pipettes 2ml FARENHEIT, Milton Keynes, UK

Pipettes plastic disposable 1ml, 5ml, 10ml, 25ml FARENHEIT

Filter disk 0.22um FARENHEIT

Centrifuge tubes , 15ml, 50ml FARENHEIT

Pasteur pipette plastic sterile (fine) ALPHA, Hampshire, UK

Pipette micro-volume tips 0.5 - lOul ALPHA

Pipette tips Yellow (200ul), Blue (lOOOul) SARSTEDT, Leicester, UK

Pasteur pipettes glass (150mm) PATTERSON, Luton, UK

Glass slides and cover slips CHANCE PROPPER LTD, Wariey, UK

Cryovials 1.2ml JENCONS, Bedfordshire, UK

Sam ple tubes, 1.5ml JENCONS

Eppendorf tubes, 0.5m l, 1.5ml ADERMAN & CO, Surrey, UK
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Appendix II
KEMRI RESEARCH UNIT KILIFI

INFORMED CONSENT

Title of Study: Kinetics of responses to the surface of red cells infected by malaria 

schizonts.

Investigators: Prof. Kevin Marsh, Samson Kinyanjui

We would like to do a study to understand the way the body develops ability to fight malaria 
parasites. It is known that adults are able to fight malaria parasites and avoid becoming sick 
while children are infected easily and become very sick. This study will help us understand 
the following things.

1. The way the body fights malaria infection
2. How this capability develop as a child grows
3. How we can develop vaccine to prevent malaria infection

To do carry out this study we will need to obtain blood samples from children when they are 
sick and the 1, 2, 3, 6, 9, and 12 weeks after treatment. The blood samples will be obtained 
from the child’s arm by a trained clinician . This process may be slightly painful but will not 
harm the child. We are requesting you to allow your child to participate in this study.

Your child will benefit in having regular examination for fever and malaria parasites and 
receiving prompt treatment. The results of this study will help us in understanding better 
how we can prevent malaria. However, your child’s participation is purely voluntary and you 
will in no way be penalized for refusing to your child to participate. You will also be free be 
withdraw him/her from the study anytime you wish without any explanation. Please feel free 
to ask any questions about the study and if after this discussion you have decided to allow 
you child to participate in this study, we would like you to sign the accompanying form

I, ________________ the (mother/father/guardian) of the children listed here
below confirm that __________________________  has explained this study to me in
Kiswahili / Kigiriama /English which is a language in which I am fluent. In giving consent to 
this study I understand that refusal or withdrawal of consent will in no way prejudice my 
child’s treatment, and that I may withdraw my child from the study at any time.

Signature or thumb print______________________ (guardian/father/mother)
Date_____________________
Name of person obtaining consent_____________________

Signature_______________________  lnvestigator_
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Appendix III

KEMRI RESEARCH UNIT KILIFI

INFORMED CONSENT (children)

Title of Study; The Natural History Of Acquired Immunity To Malaria.

Investigators: Prof. Kevin Marsh Dr. Tabitha Mwangi, Samson Kinyanjui, Victor Odera,Dr. 
Peter Bull, Dr. Bob Snow,

We would like to do a study to try to improve the diagnosis, treatment and prevention of 
malaria. In this study, we are interested in trying to understand two things about malaria. 
Firstly, we want to know the various symptoms that accompany mild malaria fevers, treated 
at outpatient clinics or at home without admission to hospital. Secondly would like to study 
the way the body’s ability to resist infection by malaria parasites develops as a person 
becomes older.

To do this we need to follow up a group of children and adults for a year during which period 
we will record all cases of fever and the presence of malaria parasite in their blood. We are 
requesting you to allow your child to participate in this study.

At the start of the study, you will be provided with bus fare to take your child to Kilifi District 
Hospital where he/she shall be examined for fever and asked to give a small volume of 
blood to be examined for malaria parasites. After this, your child will be followed up for a 
year. During this period, KEMRI workers will visit you once a week and take his/her body 
temperature. If your child has fever, a small blood sample will be drawn from him/her by a 
prick on the finger to make a malaria slide. You will be given bus fare to take the child to Kilifi 
District Hospital where he/she will receive treatment and bus fare for your journey back 
home. You will also be requested to bring the child back to the hospital two weeks after 
treatment where a small volume of blood will be taken for immunity studies. All volumes of 
blood will be taken by trained personnel. A special cream shall be applied on the part to be 
pricked to reduce pain.

A blood smear will also be made if your child has had a fever at any time since the last visit 
by KEMRI workers even though he/she is well during the current visit. If malaria parasites 
are found on the smear, the workers will bring you antimalarial drugs the next day.

A general examination in of all the participants similar to the one at the beginning of the 
study will be carried out halfway through the study and at the end of the study

Your child will benefit in having regular examination for fever and malaria parasites and 
receiving prompt treatment. The results of this study will help us in understanding how we 
can best diagnose, treat and prevent malaria. However, your child’s participation is purely 
voluntary and you will in no way be penalized for refusing to your child to participate. You will 
also be free be withdraw him/her from the study anytime you wish without any explanation. 
Please feel free to ask any questions about the study and if after this discussion you have 
decided to allow you child to participate in this study, we would like you to sign the 
accompanying form

_the (mother/father/guardian) of the children listed here
below confirm that __________________________  has explained this study to me in
Kiswahili / Kigiriama /English which is a language in which I am fluent. In giving consent to
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this study I understand that refusal or withdrawal of consent will in no way prejudice my 
child’s treatment, and that I may withdraw my child from the study at any time.

Signature or thumb print________
Date_____________________
Name of person obtaining consent

Signature_____________________

(guardian/father/mother)

lnvestigator_

List of children

Enumeration zone |____ |____ | Household No |___|___|___|___ |

Relation with the consenter - mother [ ] father [ ] guardian [ ]

Brady no Name Age School Class
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