40 research outputs found

    A panel of microsatellites to individually identify leopards and its application to leopard monitoring in human dominated landscapes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Leopards are the most widely distributed of the large cats, ranging from Africa to the Russian Far East. Because of habitat fragmentation, high human population densities and the inherent adaptability of this species, they now occupy landscapes close to human settlements. As a result, they are the most common species involved in human wildlife conflict in India, necessitating their monitoring. However, their elusive nature makes such monitoring difficult. Recent advances in DNA methods along with non-invasive sampling techniques can be used to monitor populations and individuals across large landscapes including human dominated ones. In this paper, we describe a DNA-based method for leopard individual identification where we used fecal DNA samples to obtain genetic material. Further, we apply our methods to non-invasive samples collected in a human-dominated landscape to estimate the minimum number of leopards in this human-leopard conflict area in Western India.</p> <p>Results</p> <p>In this study, 25 of the 29 tested cross-specific microsatellite markers showed positive amplification in 37 wild-caught leopards. These loci revealed varied levels of polymorphism (four-12 alleles) and heterozygosity (0.05-0.79). Combining data on amplification success (including non-invasive samples) and locus specific polymorphisms, we showed that eight loci provide a sibling probability of identity of 0.0005, suggesting that this panel can be used to discriminate individuals in the wild. When this microsatellite panel was applied to fecal samples collected from a human-dominated landscape, we identified 7 individuals, with a sibling probability of identity of 0.001. Amplification success of field collected scats was up to 72%, and genotype error ranged from 0-7.4%.</p> <p>Conclusion</p> <p>Our results demonstrated that the selected panel of eight microsatellite loci can conclusively identify leopards from various kinds of biological samples. Our methods can be used to monitor leopards over small and large landscapes to assess population trends, as well as could be tested for population assignment in forensic applications.</p

    Genetic evidence of differential dispersal pattern in the Asiatic wild dog: Comparing two populations with different pack sizes

    Get PDF
    IntroductionDispersal is a multi-causal, crucial life-history event in shaping the genetic and behavioral structure of mammals. We assessed the dispersal pattern of dholes aka Asiatic wild dog (Cuon alpinus), a social monogamous mammal at two tiger reserves of Maharashtra with different degrees of pack size and competition with tigers i.e. Tadoba-Andhari (TATR, smaller pack size, higher tiger density) and Nawegaon-Nagzira (NNTR, larger pack size, lower tiger density).MethodsWe used the microsatellite data of 174 individual genotypes (98 males and 67 females) to assess the dispersal pattern of dholes from two populations with varying pack size, tiger density, and landscape connectivity using gene flow as a proxy. We compared the population structure, pairwise F statistics, assignment index, and relatedness across a spatial scale.Results and discussionOverall, the results suggested a difference in sex-bias dispersal pattern for the two sub-populations, exhibiting significant results for female-biased dispersal in the TATR population with a smaller pack size and higher tiger density. Our study highlights the variability in sex-biased dispersal patterns in two different populations which could be the consequence of different variables such as pack size, tiger density, and geographical scale. The study warrants further quantitative investigation including several factors such as individual behavior, pack composition, pack size, tiger density, etc. In the present Anthropocene era, determining the sex bias in dispersal patterns for a short-range, pack-living carnivore will help in devising an effective conservation management plan for their long-term survival

    Demographic loss, genetic structure and the conservation implications for Indian tigers

    No full text
    India is home to approximately 60 per cent of the world’s remaining wild tigers, a species that has declined in the last few centuries to occupy less than 7 per cent of its former geographical range. While Indian tiger numbers have somewhat stabilized in recent years, they remain low and populations are highly fragmented. Therefore, the application of evidence-based demographic and genetic management to enhance the remaining populations is a priority. In this context, and using genetic data from historical and modern tigers, we investigated anthropogenic impacts on genetic variation in Indian tigers using mitochondrial and nuclear genetic markers. We found a very high number of historical mitochondrial DNA variants, 93 per cent of which are not detected in modern populations. Population differentiation was higher in modern tigers. Simulations incorporating historical data support population decline, and suggest high population structure in extant populations. Decreased connectivity and habitat loss as a result of ongoing fragmentation in the Indian subcontinent has therefore resulted in a loss of genetic variants and increased genetic differentiation among tiger populations. These results highlight that anthropogenic fragmentation and species-specific demographic processes can interact to alter the partitioning of genetic variation over very short time scales. We conclude that ongoing strategies to maximize the size of some tiger populations, at the expense of losing others, is an inadequate conservation strategy, as it could result in a loss of genetic diversity that may be of adaptive significance for this emblematic species

    Why the Indian Subcontinent Holds the Key to Global Tiger Recovery

    Get PDF
    With only,3,000 wild individuals surviving restricted to just 7 % of their historical range, tigers are now a globally threatened species. Therefore, conservation efforts must prioritize regions that harbor more tigers, as well try to capture most of the remaining genetic variation and habitat diversity. Only such prioritization based on demographic, genetic, and ecological considerations can ensure species recovery and retention of evolutionary flexibility in the face of ongoing global changes. Although scientific understanding of ecological and demographic aspects of extant wild tiger populations has improved recently, little is known about their genetic composition and variability. We sampled 73 individual tigers from 28 reserves spread across a diversity of habitats in the Indian subcontinent to obtain 1,263 bp of mitochondrial DNA and 10 microsatellite loci. Our analyses reveals that Indian tigers retain more than half of the extant genetic diversity in the species. Coalescent simulations attribute this high genetic diversity to a historically large population size of about 58,200 tigers for peninsular India south of the Gangetic plains. Furthermore, our analyses indicate a precipitous, possibly human-induced population crash,200 years ago in India, which is in concordance with historical records. Our results suggest that only 1.7% (with an upper limit of 13 % and a lower limit of 0.2%) of tiger numbers in historical times remain now. In the global conservation context our results suggest that, based on genetic, demographic, and ecological considerations, the India

    Co-dominant marker allelic raw data

    No full text
    Data generation was done for scat samples of Asiatic wild odg collected from field using codominant microsatellite markers. Post amplification, 2 μl of PCR product was mixed with HiDi formamide and LIZ 500 size standard and genotyped in an ABI genetic analyzer. The fragment lengths were scored manually using the program GENEMARKER (Softgenetics Inc., Pennsylvania, 196 Unites States). Each reaction was repeated three times to ensure good data quality. The uploaded file is the consensus allele call for three repeats of each 101 sample

    Standardization and validation of a panel of cross-species microsatellites to individually identify the Asiatic wild dog (Cuon alpinus)

    No full text
    Background The Asiatic wild dog or dhole (Cuon alpinus) is a highly elusive, monophyletic, forest dwelling, social canid distributed across south and Southeast Asia. Severe pressures from habitat loss, prey depletion, disease, human persecution and interspecific competition resulted in global population decline in dholes. Despite a declining population trend, detailed information on population size, ecology, demography and genetics is lacking. Generating reliable information at landscape level for dholes is challenging due to their secretive behaviour and monomorphic physical features. Recent advances in non-invasive DNA-based tools can be used to monitor populations and individuals across large landscapes. In this paper, we describe standardization and validation of faecal DNA-based methods for individual identification of dholes. We tested this method on 249 field-collected dhole faeces from five protected areas of the central Indian landscape in the state of Maharashtra, India. Results We tested a total of 18 cross-species markers and developed a panel of 12 markers for unambiguous individual identification of dholes. This marker panel identified 101 unique individuals from faecal samples collected across our pilot field study area. These loci showed varied level of amplification success (57–88%), polymorphism (3–9 alleles), heterozygosity (0.23–0.63) and produced a cumulative misidentification rate or PID(unbiased) and PID(sibs) value of 4.7 × 10−10 and 1.5 × 10−4, respectively, indicating a high statistical power in individual discrimination from poor quality samples. Conclusion Our results demonstrated that the selected panel of 12 microsatellite loci can conclusively identify dholes from poor quality, non-invasive biological samples and help in exploring various population parameters. This genetic approach would be useful in dhole population estimation across its range and will help in assessing population trends and other genetic parameters for this elusive, social carnivore

    Data from: Cross-species screening of microsatellite markers for individual identification of snow petrel Pagodroma nivea and Wilson’s storm petrel Oceanites oceanicus in Antarctica

    No full text
    Seabirds are important indicators of marine ecosystem health. Species within the order Procellariiformes are the most abundant seabird species group distributed from warm tropical to cold temperate regions including Antarctica. There is a paucity of information on basic biology of the pelagic seabird species nesting on the Antarctic continents, and long-term studies are required to gather data on their population demography, genetics and other ecological parameters. Under the ‘Biology and Environmental Sciences’ component of the Indian Antarctic programme, long-term monitoring of Antarctic biodiversity is being conducted. In this paper, we describe results of cross-species screening of a panel of 12 and 10 microsatellite markers in two relatively little studied seabird species in Antarctica, the snow petrel Pagodroma nivea and the Wilson's storm petrel Oceanites oceanicus, respectively. These loci showed high amplification success and moderate levels of polymorphism in snow petrel (mean no. of alleles 7.08 ± 3.01 and mean observed heterozygosity 0.35 ± 0.23), but low polymorphism in Wilson's storm petrel (mean no. of alleles 3.9 ± 1.3 and mean observed heterozygosity 0.28 ± 0.18). The results demonstrate that these panels can unambiguously identify individuals of both species (cumulative PIDsibs for snow petrel is 3.7 × 10−03 and Wilson's storm petrel is 1.9 × 10−02) from field-collected samples. This work forms a baseline for undertaking long-term genetic research of these Antarctic seabird species and provides critical insights into their population genetics

    Connectivity of Tiger (<i>Panthera tigris</i>) Populations in the Human-Influenced Forest Mosaic of Central India

    Get PDF
    <div><p>Today, most wild tigers live in small, isolated Protected Areas within human dominated landscapes in the Indian subcontinent. Future survival of tigers depends on increasing local population size, as well as maintaining connectivity between populations. While significant conservation effort has been invested in increasing tiger population size, few initiatives have focused on landscape-level connectivity and on understanding the effect different landscape elements have on maintaining connectivity. We combined individual-based genetic and landscape ecology approaches to address this issue in six protected areas with varying tiger densities and separation in the Central Indian tiger landscape. We non-invasively sampled 55 tigers from different protected areas within this landscape. Maximum-likelihood and Bayesian genetic assignment tests indicate long-range tiger dispersal (on the order of 650 km) between protected areas. Further geo-spatial analyses revealed that tiger connectivity was affected by landscape elements such as human settlements, road density and host-population tiger density, but not by distance between populations. Our results elucidate the importance of landscape and habitat viability outside and between protected areas and provide a quantitative approach to test functionality of tiger corridors. We suggest future management strategies aim to minimize urban expansion between protected areas to maximize tiger connectivity. Achieving this goal in the context of ongoing urbanization and need to sustain current economic growth exerts enormous pressure on the remaining tiger habitats and emerges as a big challenge to conserve wild tigers in the Indian subcontinent.</p></div
    corecore