7,995 research outputs found

    Application of airborne infrared technology to monitor building heat loss

    Get PDF
    The application of airborne infrared technology to the requirements for energy conservation in buildings was studied. Quantitative airborne data of the City of Ypsilanti, Michigan, were collected and processed to identify roof temperatures. A thermal scanner was flown at an altitude of 1,200 feet with two thermal bands 8.2-9.3 micrometers and 10.4-12.5 micrometers recorded by an analog system. Calibration was achieved by standard hot and cold plates. Using a thermal model to interpret ceiling insulation status, environmental factors were found to influence the relation between roof temperature and insulation. These include interior and sky temperatures, roofing materials, and the pitch and orientation of the roof. A follow-up mail survey established the ability to identify insulated and uninsulated houses from the airborne infrared data

    Update - Body of Knowledge (BOK) for Copper Wire Bonds

    Get PDF
    Copper wire bond technology developments continue to be a subject of technical interest to the NASA (National Aeronautics and Space Administration) NEPP (NASA Electronic Parts and Packaging Program) which funded this update. Based on this new research, additional copper bond wire vulnerabilities were found in the literature - Crevice corrosion, intrinsic degradation of palladium coated copper wire, congregation of palladium near ball bond interface leading to failure, residual aluminum pad metallization impact on device lifetimes, stitch cracking phenomena, package delamination's that have resulted in wire bond failures and device failure due to elemental sulfur. A search of the U.S.A. patent web site found 3 noteworthy patents on the following developments: claim of a certain IMC (Intermetallic Compound) thickness as a mitigation solution to chlorine corrosion; claim of using materials with different pHs to neutralize contaminants in a package containing copper wire bonds; and a discussion on ball shear test threshold values for different applications. In addition, an aerospace contractor of military hardware had a presentation on copper bond wires where it was reported that there was a parametric shift and noise susceptibility of devices with copper bond wires which affected legacy design performance. A review of silver bond wire (another emerging technology) technical papers found that an electromigration failure mechanism was evident in device applications that operate under high current conditions. More studies may need to be performed on a comprehensive basis. Research areas for consideration are suggested, however, these research and or qualification/standard test areas are not all inclusive and should not be construed as the element (s) that delivers any potential copper wire bond solution. A false sense of security may occur, whenever there is a reliance on passing any particular qualification, standard, or test protocol

    Body of Knowledge (BOK) for Copper Wire Bonds

    Get PDF
    Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications. An evaluation of copper wire bond technology for applicability to spaceflight hardware may be warranted along with concurrently compiling a comprehensive understanding of the failure mechanisms involved with copper wire bonded semiconductor devices

    Guest editorial: Technology supported assessment in formal and informal learning

    Get PDF

    The ROTSE-III Robotic Telescope System

    Get PDF
    The observation of a prompt optical flash from GRB990123 convincingly demonstrated the value of autonomous robotic telescope systems. Pursuing a program of rapid follow-up observations of gamma-ray bursts, the Robotic Optical Transient Search Experiment (ROTSE) has developed a next-generation instrument, ROTSE-III, that will continue the search for fast optical transients. The entire system was designed as an economical robotic facility to be installed at remote sites throughout the world. There are seven major system components: optics, optical tube assembly, CCD camera, telescope mount, enclosure, environmental sensing & protection and data acquisition. Each is described in turn in the hope that the techniques developed here will be useful in similar contexts elsewhere.Comment: 19 pages, including 4 figures. To be published in PASP in January, 2003. PASP Number IP02-11

    Developing an applied model for making decisions towards the end of life about care for someone with dementia

    Get PDF
    BACKGROUND: Many people with dementia reach the end-of-life without an advance care plan. Many are not ready to have conversations about end-of-life, and decision-making is left to their families and professionals when they no longer have capacity. Carers may benefit from further support with decision-making. To develop this support, it is important to understand the decision-making process. AIM: Explore with family carers and people living with dementia the decision-making process and factors that influence decision-making in dementia end of life care, to produce a model of decision-making in the context of dementia end-of-life care. METHODS: Semi-structured interviews with 21 family carers and 11 people with dementia in England (2018–2019) from memory clinics, general practice and carer organisations. Interviews were analysed using thematic analysis and findings were mapped onto the Interprofessional Shared Decision Making model, refined to produce a modified model of decision-making in dementia. RESULTS: Participants described five key decisions towards the end-of-life as examples of decision making. We used these experiences to produce a modified model of decision-making in dementia end-of-life-care. The model considers the contextual factors that influence the decision-making process, including: personal preferences; advance care planning and Lasting Power of Attorney; capacity and health and wellbeing of the person with dementia; support from others and clarity of roles. The decision-making process consists of seven inter-linked stages: 1) identifying the decision maker or team; 2) sharing and exchanging information; 3) clarifying values and preferences; 4) managing and considering emotions; 5) considering the feasibility of options; 6) balancing preferred choice and the actual choice; and 7) implementation and reflecting on outcomes. CONCLUSIONS: The modified model breaks down the decision-making process and attempts to simplify the process while capturing the subtle nuances of decision making. It provides a framework for conversations and supporting decisions by carers

    Modelling fungal colonies and communities:challenges and opportunities

    Get PDF
    This contribution, based on a Special Interest Group session held during IMC9, focuses on physiological based models of filamentous fungal colony growth and interactions. Fungi are known to be an important component of ecosystems, in terms of colony dynamics and interactions within and between trophic levels. We outline some of the essential components necessary to develop a fungal ecology: a mechanistic model of fungal colony growth and interactions, where observed behaviour can be linked to underlying function; a model of how fungi can cooperate at larger scales; and novel techniques for both exploring quantitatively the scales at which fungi operate; and addressing the computational challenges arising from this highly detailed quantification. We also propose a novel application area for fungi which may provide alternate routes for supporting scientific study of colony behaviour. This synthesis offers new potential to explore fungal community dynamics and the impact on ecosystem functioning

    The GREAT triggerless total data readout method

    Get PDF
    Recoil decay tagging (RDT) is a very powerful method for the spectroscopy of exotic nuclei. RDT is a delayed coincidence technique between detectors usually at the target position and at the focal plane of a spectrometer. Such measurements are often limited by dead time. This paper describes a novel triggerless data acquisition method, which is being developed for the Gamma Recoil Electron Alpha Tagging (GREAT) spectrometer, that overcomes this limitation by virtually eliminating dead time. Our solution is a total data readout (TDR) method where all channels run independently and are associated in software to reconstruct events. The TDR method allows all the data from both target position and focal plane to be collected with practically no dead-time losses. Each data word is associated with a timestamp generated from a global 100-MHz clock. Events are then reconstructed in real time in the event builder using temporal and spatial associations defined by the physics of the experimen
    corecore