11 research outputs found

    A Structure-Based Approach for Detection of Thiol Oxidoreductases and Their Catalytic Redox-Active Cysteine Residues

    Get PDF
    Cysteine (Cys) residues often play critical roles in proteins, for example, in the formation of structural disulfide bonds, metal binding, targeting proteins to the membranes, and various catalytic functions. However, the structural determinants for various Cys functions are not clear. Thiol oxidoreductases, which are enzymes containing catalytic redox-active Cys residues, have been extensively studied, but even for these proteins there is little understanding of what distinguishes their catalytic redox Cys from other Cys functions. Herein, we characterized thiol oxidoreductases at a structural level and developed an algorithm that can recognize these enzymes by (i) analyzing amino acid and secondary structure composition of the active site and its similarity to known active sites containing redox Cys and (ii) calculating accessibility, active site location, and reactivity of Cys. For proteins with known or modeled structures, this method can identify proteins with catalytic Cys residues and distinguish thiol oxidoreductases from the enzymes containing other catalytic Cys types. Furthermore, by applying this procedure to Saccharomyces cerevisiae proteins containing conserved Cys, we could identify the majority of known yeast thiol oxidoreductases. This study provides insights into the structural properties of catalytic redox-active Cys and should further help to recognize thiol oxidoreductases in protein sequence and structure databases

    Mutations in DSTYK and dominant urinary tract malformations.

    Get PDF
    ABSTRACT Introduction Congenital abnormalities of the kidney of the urinary tract are the most common cause of pediatric kidney failure. These disorders are highly heterogeneous, and their etiology is poorly understood. Methods We performed genome-wide linkage analysis and whole-exome sequencing in a family with autosomal dominant congenital abnormalities of the kidney of the urinary tract (7 affected family members). We also performed sequence analysis in 311 unrelated patients, as well as histologic and functional studies. Results Linkage analysis identified five regions of the genome that were shared among all affected family members. Exome sequencing identified a single rare deleterious variant within these linkage intervals, a heterozygous splice-site mutation in dual serine/threonine and tyrosine protein kinase (DSTYK). This variant, which resulted in aberrant gene product splicing, was present in all affected family members. Additional independent DSTYK mutations, including nonsense and splice-site mutations, were detected among 7/311 unrelated patients. DSTYK is highly expressed in the maturing epithelia of all major organs, localizing to cell membranes. Knockdown in zebrafish resulted in multi-organ developmental defects, resembling loss of fibroblast growth factor (FGF) signaling. Consistent with this finding, DSTYK colocalizes with FGF receptors in the ureteric bud and metanephric mesenchyme. Finally, DSTYK knockdown in human embryonic kidney cells inhibited FGF-stimulated ERK-phosphorylation, the principal signal downstream of receptor tyrosine kinases. Conclusions We detected DSTYK mutations in 2.2% of patients with congenital abnormalities of the kidney and urinary tract whom we studied, suggesting that DSTYK is a major determinant of human urinary tract development, downstream of FGF signaling

    Defining the Molecular Character of the Developing and Adult Kidney Podocyte

    Get PDF
    BACKGROUND: The podocyte is a remarkable cell type, which encases the capillaries of the kidney glomerulus. Although mesodermal in origin it sends out axonal like projections that wrap around the capillaries. These extend yet finer projections, the foot processes, which interdigitate, leaving between them the slit diaphragms, through which the glomerular filtrate must pass. The podocytes are a subject of keen interest because of their key roles in kidney development and disease. METHODOLOGY/PRINCIPAL FINDINGS: In this report we identified and characterized a novel transgenic mouse line, MafB-GFP, which specifically marked the kidney podocytes from a very early stage of development. These mice were then used to facilitate the fluorescent activated cell sorting based purification of podocytes from embryos at E13.5 and E15.5, as well as adults. Microarrays were then used to globally define the gene expression states of podocytes at these different developmental stages. A remarkable picture emerged, identifying the multiple sets of genes that establish the neuronal, muscle, and phagocytic properties of podocytes. The complete combinatorial code of transcription factors that create the podocyte was characterized, and the global lists of growth factors and receptors they express were defined. CONCLUSIONS/SIGNIFICANCE: The complete molecular character of the in vivo podocyte is established for the first time. The active molecular functions and biological processes further define their unique combination of features. The results provide a resource atlas of gene expression patterns of developing and adult podocytes that will help to guide further research of these incredible cells
    corecore