32 research outputs found

    Extraction of Coriander Oil Using Twin‑Screw Extrusion: Feasibility Study and Potential Press Cake Applications

    Get PDF
    This study presents an assessment of the vegetable oil extraction from coriander fruits through mechanical pressing, more specifically twin-screw extrusion. This comprises an evaluation of the oil recovery obtained and its respective quality, as well as the specific mechanical energy, representing an economical point of view. With regard to the extrusion optimization, the screw configuration, the device’s filling coefficient and the pressing temperature were varied. The screw configuration was shown to exhibit a key influence on the extraction efficiency and oil recoveries of at least 40 % were reached when the pressing zone was positioned immediately after the filter and consisted of 50 mm long, reverse screws with a -33 mm pitch. Furthermore, with a device’s filling coefficient of 39.4 g/h rpm and a pressing temperature of 120 °C, an oil recovery of 47 %, the highest of this study, was reached with concurrent low energy consumption. Next to this, operating parameters of 47.1 g/h rpm and 80 °C resulted in the production of a press cake with the lowest residual oil content (15 %) in this study, although this also involved a significant increase in the filtrate’s foot content. All the produced oils were of acceptable quality (<1.5 % acidity), showed high petroselinic acid content (73 %), and were pleasantly scented

    High conversion of palm olein to ethyl esters using a strong anion exchange resin: study of the operational parameters

    Get PDF
    Biodiesel, known as a mixture of fatty acid ethyl/methyl esters, is seen as an alternative, ecofriendly, biodegradable and renewable non-fossil fuel. The use of heterogeneous catalysts for biodiesel synthesis can solve several problems associated with the homogeneous alkaline catalyzed-transesterification. Therefore, this work reports the evaluation of the commercial resin Amberlyst A26OH, a strong anion exchange resin, as a heterogeneous catalyst for the batch transesterification of refined palm olein with ethanol. It was studied the effects of the main operational parameters, considering the molar ratio of the reaction mixture (MRRM), namely the molar ratio of ethanol to olein taking into account only the ethanol added to the reaction system, and the total molar ratio (TMR), in this case considering also the amount of ethanol carried by the resin after its pretreatment. It was determined an optimal range of operational conditions by response surface methodology, guaranteeing conversion to ethyl esters higher than 96% with a catalyst amount corresponding to a range from 10.4 to 11.4% of the oil quantity, a temperature within the range of 55 to 60 ºC and a MRRM within the range from 3.5:1 to 6.0:131714011412CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP406963/2016-9; 406856/2013-3; 429873/2018-2; 305870/2014-9Sem informação2014/21252-0; 2016/10636-

    Ésteres de cloropropanóis e de glicidol em alimentos

    Full text link
    Chloropropanols are a well-known group of food processing contaminants. They are formed through the reaction between lipids and chlorides when submitted to thermal treatment, and can be found in free and bound form. Although free chloropropanols were identified around 30 years ago, the occurrence of bound forms, especially 3-MCPD, and glycidyl fatty acid esters, has only recently been reported in several food products. Dietary exposure to these ester-bound compounds has been considered a priority food safety issue since free forms can be potentially released through the action of gut lipases, representing a major toxicological concern

    Characterization of french coriander oil as source of petroselinic acid

    Get PDF
    Coriander vegetable oil was extracted from fruits of French origin in a 23% yield. The oil was of good quality, with a low amount of free fatty acids (1.8%) and a concurrently high amount of triacylglycerols (98%). It is a rich source of petroselinic acid (C18:1n-12), an important renewable building block, making up 73% of all fatty acids, with also significant amounts of linoleic acid (14%), oleic acid (6%), and palmitic acid (3%). The oil was characterized by a high unsaponifiable fraction, comprising a substantial amount of phytosterols (6.70 g/kg). The main sterol markers were β-sitosterol (35% of total sterols), stigmasterol (24%), and Δ7-stigmastenol (18%). Squalene was detected at an amount of 0.2 g/kg. A considerable amount of tocols were identified (500 mg/kg) and consisted mainly of tocotrienols, with γ-tocotrienol as the major compound. The phospholipid content was low at 0.3%, of which the main phospholipid classes were phosphatidic acid (33%), phosphatidylcholine (25%), phosphatidylinositol (17%), and phosphatidylethanolamine (17%). About 50% of all phospholipids were non-hydratable. The β-carotene content was low at 10 mg/kg, while a significant amount of chlorophyll was detected at about 11 mg/kg. An iron content of 1.4 mg/kg was determined through element analysis of the vegetable oil. The influence of fruit origin on the vegetable oil composition was shown to be very important, particularly in terms of the phospholipids, sterols, and tocols composition21

    Thermal and physical properties of crude palm oil with higher oleic content

    Get PDF
    Interspecific hybridization of oil palms (E. guineensis × E. oleifera) was initially exploited to provide disease resistance and, consequently, increased oleic acid content. Besides the growing importance of this cultivar to the market, there is little information about this oil’s properties. In this context, this study aimed to determine a comprehensive physicochemical and thermal characterization of hybrid palm oil (HOPO) compared with the better-known African palm oil (APO). Differences in the distribution of fatty acids, carotenoids, and tocols were observed. Minor differences in density and viscosity were found between the oils, with no relevance for the materials’ processing design. Nevertheless, HOPO showed unique crystallization behavior, which potentially can affect industrial operations, such as fractionation. HOPO did not present the two thermal characteristic regions of APO, attributed to olein and stearin fractions. The HOPO demonstrated a decrease in the melting point of more than 3 °C in relation to APO, and a reduction in the crystallization point of more than 6 °C. Furthermore, besides the higher content of unsaturated fatty acids, HOPO was more stable than APO due to a higher antioxidant content. These results could be useful to establish operation conditions for processes using palm oil from hybrid oil palm

    Physical deacidification of palm oil : effect of oil composition, losses of nutraceutical compounds and reaction kinetics

    No full text
    Orientadores: Antonio José de Almeida Meirelles, Roberta Ceriani, Roland VerhéTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de AlimentosResumo: Os parâmetros ótimos de desodorização (temperatura, porcentagem de vapor e pressão de operação) são determinados de acordo com o tipo de óleo e o processo de refino selecionado. O refino do óleo de palma é realizado preferencialmente através do refino físico, pois sua elevada acidez pode provocar uma perda excessiva de óleo neutro no caso da utilização do refino químico. O refino físico de óleos vegetais consiste num processo de esgotamento ou stripping, no qual sob pressões reduzidas e elevadas temperaturas os compostos voláteis são removidos do óleo neutro através da utilização de um agente de arraste, que pode ser um gás ou vapor. No entanto, estas condições de processo também facilitam a ocorrência de volatilização de valiosos compostos minoritários como esqualeno, tocoferóis, tocotrienóis, fitoesteróis, bem como uma pequena porção dos acilgliceróis. Desta forma, este trabalho apresenta a aplicação da metodologia de superfície de resposta (MSR) no estudo dos efeitos de três variáveis de processo (temperatura, porcentagem de vapor e fração estearina/oleína), sobre a perda/transferência de compostos graxos durante a desacidificação física. As respostas de interesse foram acidez final do óleo e perda de óleo neutro (PON). Os resultados revelaram que a composição do óleo é um fator importante e estatisticamente significante a ser considerado na seleção de variáveis de processo mais adequadas, além da temperatura e da porcentagem de vapor. Na segunda etapa, foi realizado um estudo detalhado da degradação térmica dos carotenóides no óleo de palma considerando-se temperaturas variando na faixa de 170 ºC a 230 ºC. O processo de aquecimento foi realizado com injeção de nitrogênio e a coleta de amostra foi feita a cada 20 min durante um período de aquecimento total de 140 min. Os dados experimentais foram então comparados com dados da literatura relacionados à degradação de carotenóides. A degradação térmica dos carotenóides mostrou uma melhor adequação a uma ordem de reação superior a 1. Em uma etapa posterior, a metodologia de superfície de resposta (MSR) foi aplicada para o refino físico de amostras de óleo de palma de diferentes qualidades, medidas através de sua acidez inicial. Foram consideradas a influência de duas condições de operação e um terceiro parâmetro de qualidade, sendo estes: temperatura, porcentagem de vapor e acidez inicial das amostras. As respostas de interesse foram acidez final do óleo, retenção de tocóis, perda de óleo neutro (PON) e retenção de carotenóides. Os resultados mostraram que a acidez inicial é um parâmetro estatisticamente importante para a obtenção de valores aceitáveis de acidez final. Este parâmetro está diretamente relacionado à concentração de componentes minoritários no óleo, pois caso o valor de acidez final não tenha atendido aos padrões pré-determinados, o óleo deve ser submetido a tratamentos subseqüentes utilizando-se temperaturas mais elevadas ou maiores tempo de processo, portanto, acarretando a redução dos compostos minoritários. Para finalizar este trabalho foi avaliada a ocorrência da reação de hidrólise de óleo neutro durante o processo de desacidificação física. Os resultados revelaram que as maiores concentrações de ácidos graxos livres (AGL) no óleo e as menores concentrações de AGL no destilado foram obtidas para as maiores vazões de vapor e menores tempos de processo. Observou-se também, que a geração de AGL aumenta com o aumento da porcentagem de vapor e da temperatura do processo. Através da análise da cinética da hidrólise de óleo neutro, foi possível verificar uma boa adequação dos dados à equação de primeira-ordemAbstract: Optimal deodorizing parameters (temperature, steam percentage, and operating pressure) are determined by the type of oil and the selected refining process. Refining of palm oil is preferably performed by physical means since its high acidity can lead to excessive losses of neutral oil in case of the caustic refining process. Physical refining of vegetable oils is a stripping process in which, under low absolute pressure and high temperatures, the accompanying lower boiling compounds are distilled off from neutral oil, by using gas or steam, as effective stripping agent. However, these processing conditions also increase the occurrence of volatilization of the valuable minor components present in the oil such as squalene, tocopherols, phytosterols, as well as some portion of acylglycerols. Thus, this work presents the application of response surface methodology (RSM) to the study of the effects of three factors (temperature, percentage of stripping steam and the stearin/olein ratio) on the losses/transfer of fatty compounds during the steam deacidification. The responses of interest were the final oil acidity and the loss of neutral oil (NOL). The results revealed that the oil composition was an important and statistically significant factor in the selection of more suitable processing variables, besides temperature and steam. In the second step, a detailed study was performed for carotene thermal degradation in palm oil at four temperatures ranging from 170 ºC to 230 ºC. The heating process was carried out with injection of nitrogen and the samples were collected every 20 min during a total heating period of 140 min. The experimental data were then compared to literature data concerning carotenoids thermal degradation. The thermal degradation kinetics of carotenoids in palm oil followed an order superior to 1. In the next step of this work, response surface methodology (RSM) was applied to study the physical refining process of palm oil samples of different qualities, measured by their initial acidity. The influence of two operative conditions and a third quality parameter are considered: the temperature, the steam percentage, and the initial FFA. Their effect on the final FFA, tocols retention, neutral oil loss (NOL), and carotene retention was investigated. The results revealed that the initial FFA is a statistically important parameter to obtain acceptable values for final FFA, which has directly relation with the concentration of minor components in the oil by the submission to higher temperatures or longer refining periods, in order to reach the standard values. To end this work, it was evaluated the occurrence of hydrolysis of neutral oil during the steam deacidification. The results revealed that the highest percentages of FFA into the oil and the lowest percentages of FFA on the distillate were obtained when applying high steam flow rates associated with reduced stripping times. It was also observed that the generation of free fatty acids increases with the increasing of the percent of steam injected into the oil as well as with the increasing of the process temperature. The kinetic investigation revealed that the hydrolysis of neutral oil follows a first-order reactionDoutoradoEngenharia de AlimentosDoutor em Engenharia de Alimento

    Identification of coriander oil adulteration using a portable NIR spectrometer

    No full text
    Coriander oil is a vegetable oil extracted from coriander seed that has about 70% of petroselinic acid, apart from anti-inflammatory and anti-aging properties, thus gaining the status of new food ingredient. Due to its properties and added value, it can become the target of adulteration as occurs with other edible vegetable oils of high market value. Therefore, the objective of this work was to identify the authenticity of coriander oil and adulteration with other commercial vegetable oils such as palm olein, canola oil and soybean oil. Principal component analysis (PCA) differentiated the matrices of pure oils using 3 principal components, which explained 87% of the variance. Linear discriminant analysis (LDA) and k-nearest neighbors algorithm (k-NN) were used to classify pure oil samples and adulterated coriander oils. Partial Least Squares (PLS) regression models presented coefficient of determination (R²) of 0.98, 0.99 and 0.99, for coriander oil adulterated with palm olein soybean oil and canola oil, respectively. RPD was between 7.1 and 10, which indicates robust models that can be used for quality control during the processing of coriander oil

    Enzymatic degumming: degumming efficiency versus yield increase

    No full text
    Enzymatic degumming trials were performed on crude extracted soybean (SBO) and rapeseed oils (RSO) with a microbial phospholipase A(1) (Lecitase Ultra (R)). We obtained a degummed oil with a phosphorus content<10mg/kg when applying an enzyme dosage of 30mg/kg and (feedstock dependent) a contact time of 10-120min. While a good degumming efficiency can already be obtained after a relative short reaction time, it was observed that a longer reaction time (1-2h) is required for complete degradation of the phospholipids (PL), which results in a yield increase. We demonstrated that Lecitase Ultra (R) has no specificity for a given PL, but that the rate of conversion depends on the PL composition of the crude oil. After 60min, 80% of phosphatidyl ethanolamine (PE) was degraded to its lyso-form while only 40% of phosphatidyl inositol (PI) was converted in the same time interval. The formation of glycerophospholipids (GPL) was only observed after 60min reaction. Practical applications: Practical advantages and disadvantages of the use of Lecithase Ultra for enzymatic degumming of oils is described, focusing on soybean oil and rapeseed oil. The information will be valuable and important for the oil refining industry
    corecore