26 research outputs found
Evolving trends in the surgical, anaesthetic, and intensive care management of acute spinal cord injuries in the UK
Purpose We surveyed the treatment of acute spinal cord injuries in the UK and compared current practices with 10 years ago.
Methods A questionnaire survey was conducted amongst neurosurgeons, neuroanaesthetists, and neurointensivists that manage patients with acute spinal cord injuries. The survey gave two scenarios (complete and incomplete cervical spinal cord injuries). We obtained opinions on the speed of transfer, timing and aim of surgery, choice of anaesthetic, intraoperative monitoring, targets for physiological parameters, and drug treatments.
Results We received responses from 78.6% of UK units that manage acute spinal cord injuries (33 neurosurgeons, 56
neuroanaesthetists/neurointensivists). Most neurosurgeons operate within 12 h for incomplete (82%) and complete (64%)
injuries. There is a signifcant shift from 10 years ago, when only 61% (incomplete) and 30% (complete) of neurosurgeons operated within 12 h. The preferred anaesthetic technique in 2022 is total intravenous anaesthesia (TIVA), used by 69% of neuroanaesthetists. Signifcantly more intraoperative monitoring is now used at least sometimes, including bispectral index (91%), non-invasive cardiac output (62%), and neurophysiology (73–77%). Methylprednisolone is no longer used by surgeons.
Achieving at least 80 mmHg mean arterial blood pressure is recommended by 70% neurosurgeons, 62% neuroanaesthetists,
and 75% neurointensivists.
Conclusions Between 2012 and 2022, there was a paradigm shift in managing acute spinal cord injuries in the UK with
earlier surgery and more intraoperative monitoring. Variability in practice persists due to lack of high-quality evidence and consensus guidelines
Duroplasty for injured cervical spinal cord with uncontrolled swelling: protocol of the DISCUS randomized controlled trial
Background
Cervical traumatic spinal cord injury is a devastating condition. Current management (bony decompression) may be inadequate as after acute severe TSCI, the swollen spinal cord may become compressed against the surrounding tough membrane, the dura. DISCUS will test the hypothesis that, after acute, severe traumatic cervical spinal cord injury, the addition of dural decompression to bony decompression improves muscle strength in the limbs at 6 months, compared with bony decompression alone.
Methods
This is a prospective, phase III, multicenter, randomized controlled superiority trial. We aim to recruit 222 adults with acute, severe, traumatic cervical spinal cord injury with an American Spinal Injury Association Impairment Scale grade A, B, or C who will be randomized 1:1 to undergo bony decompression alone or bony decompression with duroplasty. Patients and outcome assessors are blinded to study arm. The primary outcome is change in the motor score at 6 months vs. admission; secondary outcomes assess function (grasp, walking, urinary + anal sphincters), quality of life, complications, need for further surgery, and mortality, at 6 months and 12 months from randomization. A subgroup of at least 50 patients (25/arm) also has observational monitoring from the injury site using a pressure probe (intraspinal pressure, spinal cord perfusion pressure) and/or microdialysis catheter (cord metabolism: tissue glucose, lactate, pyruvate, lactate to pyruvate ratio, glutamate, glycerol; cord inflammation: tissue chemokines/cytokines). Patients are recruited from the UK and internationally, with UK recruitment supported by an integrated QuinteT recruitment intervention to optimize recruitment and informed consent processes. Estimated study duration is 72 months (6 months set-up, 48 months recruitment, 12 months to complete follow-up, 6 months data analysis and reporting results).
Discussion
We anticipate that the addition of duroplasty to standard of care will improve muscle strength; this has benefits for patients and carers, as well as substantial gains for health services and society including economic implications. If the addition of duroplasty to standard treatment is beneficial, it is anticipated that duroplasty will become standard of care.
Trial registration
IRAS: 292031 (England, Wales, Northern Ireland) - Registration date: 24 May 2021, 296518 (Scotland), ISRCTN: 25573423 (Registration date: 2 June 2021); ClinicalTrials.gov number : NCT04936620 (Registration date: 21 June 2021); NIHR CRN 48627 (Registration date: 24 May 2021)
Predictors of Intraspinal Pressure and Optimal Cord Perfusion Pressure After Traumatic Spinal Cord Injury.
BACKGROUND/OBJECTIVES: We recently developed techniques to monitor intraspinal pressure (ISP) and spinal cord perfusion pressure (SCPP) from the injury site to compute the optimum SCPP (SCPPopt) in patients with acute traumatic spinal cord injury (TSCI). We hypothesized that ISP and SCPPopt can be predicted using clinical factors instead of ISP monitoring. METHODS: Sixty-four TSCI patients, grades A-C (American spinal injuries association Impairment Scale, AIS), were analyzed. For 24Â h after surgery, we monitored ISP and SCPP and computed SCPPopt (SCPP that optimizes pressure reactivity). We studied how well 28 factors correlate with mean ISP or SCPPopt including 7 patient-related, 3 injury-related, 6 management-related, and 12 preoperative MRI-related factors. RESULTS: All patients underwent surgery to restore normal spinal alignment within 72Â h of injury. Fifty-one percentage had U-shaped sPRx versus SCPP curves, thus allowing SCPPopt to be computed. Thirteen percentage, all AIS grade A or B, had no U-shaped sPRx versus SCPP curves. Thirty-six percentage (22/64) had U-shaped sPRx versus SCPP curves, but the SCPP did not reach the minimum of the curve, and thus, an exact SCPPopt could not be calculated. In total 5/28 factors were associated with lower ISP: older age, excess alcohol consumption, nonconus medullaris injury, expansion duroplasty, and less intraoperative bleeding. In a multivariate logistic regression model, these 5 factors predicted ISP as normal or high with 73% accuracy. Only 2/28 factors correlated with lower SCPPopt: higher mean ISP and conus medullaris injury. In an ordinal multivariate logistic regression model, these 2 factors predicted SCPPopt as low, medium-low, medium-high, or high with only 42% accuracy. No MRI factors correlated with ISP or SCPPopt. CONCLUSIONS: Elevated ISP can be predicted by clinical factors. Modifiable factors that may lower ISP are: reducing surgical bleeding and performing expansion duroplasty. No factors accurately predict SCPPopt; thus, invasive monitoring remains the only way to estimate SCPPopt
Paucity of natural killer and cytotoxic T cells in human neuromyelitis optica lesions
Neuromyelitis optica is a severe inflammatory demyelinating disease of the central nervous system. Most patients with neuromyelitis optica have circulating immunoglobulin G (IgG) antibodies against the astrocytic water channel protein aquaporin-4 (AQP4), which are pathogenic. Anti-AQP4 IgG-mediated complement-dependent astrocyte toxicity is a key mechanism of central nervous system damage in neuromyelitis optica, but the role of natural killer and cytotoxic T cells is unknown. Our objective was to determine whether natural killer and cytotoxic T cells play a role in human neuromyelitis optica lesions. We immunostained four actively demyelinating lesions, obtained from patients with anti-AQP4 IgG positive neuromyelitis optica, for Granzyme B and Perforin. The inflammatory cells were perivascular neutrophils, eosinophils and macrophages, with only occasional Granzyme B+ or Perforin + cells. Greater than 95% of inflamed vessels in each lesion had no surrounding Granzyme B+ or Perforin + cells. Granzyme B+ or Perforin+ cells were abundant in human spleen (positive control). Although natural killer cells produce central nervous system damage in mice injected with anti-AQP4 IgG, our findings here indicate that natural killer-mediated and T cell-mediated cytotoxicity are probably not involved in central nervous system damage in human neuromyelitis optica
Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice
Neuromyelitis optica is an inflammatory demyelinating disease of the central nervous system associated with autoantibodies against the glial water channel protein aquaporin-4. It has recently been reported that immunoglobulin from neuromyelitis optica patients injected peripherally does not cause lesions in naive rats, but only when pre-existing central nervous system inflammation is present. Here, we investigated whether immunoglobulin G from aquaporin-4-autoantibody-positive neuromyelitis optica patients has the potential to damage the central nervous system either alone or in the presence of human complement. Immunoglobulin G from neuromyelitis optica patients did not activate mouse complement and was not pathogenic when injected into mouse brain. However, co-injection of immunoglobulin G from neuromyelitis optica patients with human complement produced neuromyelitis optica-like lesions in mice. Within 12 h of co-injecting immunoglobulin G from neuromyelitis optica patients and human complement, there was a striking loss of aquaporin-4 expression, glial cell oedema, myelin breakdown and axonal injury, but little intra-parenchymal inflammation. At 7 days, there was extensive inflammatory cell infiltration, perivascular deposition of activated complement components, extensive demyelination, loss of aquaporin-4 expression, loss of reactive astrocytes and neuronal cell death. In behavioural studies, mice injected with immunoglobulin G from neuromyelitis optica patients and human complement into the right hemisphere preferentially turned to the right at 7 days. No brain inflammation, demyelination or right-turning behaviour was seen in wild-type mice that received immunoglobulin G from non-neuromyelitis optica patients with human complement, or in aquaporin-4-null mice that received immunoglobulin G from neuromyelitis optica patients with human complement. We conclude that co-injection of immunoglobulin G from neuromyelitis optica patients with human complement reproduces the key histological features of neuromyelitis optica and that aquaporin-4 is necessary and sufficient for immunoglobulin G from neuromyelitis optica patients to exert its effect. In our mouse model, immunoglobulin G from neuromyelitis optica patients does not require pre-existing central nervous system inflammation to produce lesions
Presentation_1_Non-linear Dynamical Analysis of Intraspinal Pressure Signal Predicts Outcome After Spinal Cord Injury.PPTX
<p>The injured spinal cord is a complex system influenced by many local and systemic factors that interact over many timescales. To help guide clinical management, we developed a technique that monitors intraspinal pressure from the injury site in patients with acute, severe traumatic spinal cord injuries. Here, we hypothesize that spinal cord injury alters the complex dynamics of the intraspinal pressure signal quantified by computing hourly the detrended fluctuation exponent alpha, multiscale entropy, and maximal Lyapunov exponent lambda. 49 patients with severe traumatic spinal cord injuries were monitored within 72 h of injury for 5 days on average to produce 5,941 h of intraspinal pressure data. We computed the spinal cord perfusion pressure as mean arterial pressure minus intraspinal pressure and the vascular pressure reactivity index as the running correlation coefficient between intraspinal pressure and arterial blood pressure. Mean patient follow-up was 17 months. We show that alpha values are greater than 0.5, which indicates that the intraspinal pressure signal is fractal. As alpha increases, intraspinal pressure decreases and spinal cord perfusion pressure increases with negative correlation between the vascular pressure reactivity index vs. alpha. Thus, secondary insults to the injured cord disrupt intraspinal pressure fractality. Our analysis shows that high intraspinal pressure, low spinal cord perfusion pressure, and impaired pressure reactivity strongly correlate with reduced multi-scale entropy, supporting the notion that secondary insults to the injured cord cause de-complexification of the intraspinal pressure signal, which may render the cord less adaptable to external changes. Healthy physiological systems are characterized by edge of chaos dynamics. We found negative correlations between the percentage of hours with edge of chaos dynamics (−0.01 ≤ lambda ≤ 0.01) vs. high intraspinal pressure and vs. low spinal cord perfusion pressure; these findings suggest that secondary insults render the intraspinal pressure more regular or chaotic. In a multivariate logistic regression model, better neurological status on admission, higher intraspinal pressure multi-scale entropy and more frequent edge of chaos intraspinal pressure dynamics predict long-term functional improvement. We conclude that spinal cord injury is associated with marked changes in non-linear intraspinal pressure metrics that carry prognostic information.</p
Additional file 2 of Spinal cord perfusion pressure correlates with breathing function in patients with acute, cervical traumatic spinal cord injuries: an observational study
Additional file 2: Relations between SCPP and monitored parameter