11 research outputs found

    Characterization of Environmental Dust in the Dammam Area and Mud After-Effects on Bisphenol-A Polycarbonate Sheets

    Get PDF
    Owing to recent climate changes, dust storms are increasingly common, particularly in the Middle East region. Dust accumulation and subsequent mud formation on solid surfaces in humid environments typically have adverse effects on surface properties such as optical transmittance, surface texture, and microhardness. This is usually because the mud, which contains alkaline and ionic species, adheres strongly to the surface, often through chemical bonds, and is therefore difficult to remove. In this study, environmental dust and the after-effects of mud formed on a polycarbonate sheet, which is commonly used as a protective glass in photovoltaic cells. Ionic compounds (OH−) are shown to significantly affect the optical, mechanical, and textural characteristics of the polycarbonate surface, and to increase the adhesion work required to remove the dry mud from the polycarbonate surface upon drying. Such ability to modify characteristics of the polycarbonate surface could address the dust/mud-related limitations of superhydrophobic surfaces

    Combination of two antibody fragments F(ab')(2)/Fab: an alternative for scorpion envenoming treatment.

    No full text
    International audienceImmunotherapy is the only effective treatment for scorpion stings. However the efficiency of this treatment varies depending on the forms of the antibodies and route of administration used. The antibodies are mostly injected as F(ab )(2) fragments. In this study, we investigated damage to the heart and lung tissue and the inflammatory response caused by Androctonus australis hector venom, its toxic fraction after molecular filtration or the isolated main alpha toxin (Aah II) in the presence or absence of different antibody molecules. A mixture of antibody fragments, F(ab )(2) and Fab, significantly reduced local leukocytosis, hemorrhage and inflammatory oedema induced by the A. australis hector venom and its toxins

    Immunomodulation of the inflammatory response induced by Androctonus australis hector neurotoxins: biomarker interactions.

    No full text
    International audienceOBJECTIVE: Androctonus australis hector (Aah) is the most dangerous scorpion in the Maghreb countries. Its venom contains three major neurotoxins (Aah I, Aah II and Aah III), which are responsible for almost all the lethal effects caused in mammals. These toxins act on the voltage-gated sodium channels of excitable cells. The targets and the lethal effects of these toxins have been extensively studied. However, their effects on the induced immune response after envenoming have not deeply elicited. We therefore investigated the effects induced by Aah venom and its toxic components, mainly its main toxin Aah II, on the activation of the inflammatory process. METHODS: Wistar rats were injected by intraperitoneal route with a sublethal dose of Aah venom, FTox-G50, the purified Aah II toxin or with 400 μl of sterile physiological saline solution. Immunological biomarkers such as MPO, NO and ICAM-1 were analyzed in serum in lung tissue. Cytokine levels were also determined in serum at 3, 6 and 24 h after envenoming. RESULTS: We report in this study that intraperitoneal injection of the venom or its toxins (the whole toxic fraction or Aah II toxin) caused an inflammatory reaction involving increased neutrophil release into blood and neutrophil accumulation in lung tissue. This cell infiltration was associated with the release of NO, histamine, cytokines (IL-1, IL-6, IL-12, IL-4 and IL-5) and ICAM. CONCLUSION: Aah II binding to its targets, in this case Na⁺ channels, may induce a cascade of events such as inflammatory mediator release and neutrophil migration that could contribute to the exacerbation of the systemic inflammatory response and the development of lung injury following scorpion envenoming

    Structural Insights into Antibody Sequestering and Neutralizing of Na+ Channel α-Type Modulator from Old World Scorpion Venom.

    No full text
    International audienceThe Old World scorpion Androctonus australis hector (Aah) produces one of the most lethal venoms for humans. Peptidic α-toxins AahI to AahIV are responsible for its potency, with AahII accounting for half of it. All four toxins are high affinity blockers of the fast inactivation phase of mammalian voltage-activated Na(+) channels. However, the high antigenic polymorphism of α-toxins prevents production of a polyvalent neutralizing antiserum, whereas the determinants dictating their trapping by neutralizing antibodies remain elusive. From an anti-AahII mAb, we generated an antigen binding fragment (Fab) with high affinity and selectivity for AahII and solved a 2.3 Å-resolution crystal structure of the complex. Sequestering of the C-terminal region of the bound toxin within a groove formed by the Fab combining loops is associated with a toxin orientation and main and side chain conformations that dictate the AahII antigenic specificity and efficient neutralization. From an anti-AahI mAb, we also preformed and crystallized a high affinity AahI-Fab complex. The 1.6 Å-resolution structure solved revealed a Fab molecule devoid of a bound AahI and with combining loops involved in packing interactions, denoting expulsion of the bound antigen upon crystal formation. Comparative analysis of the groove-like combining site of the toxin-bound anti-AahII Fab and planar combining surface of the unbound anti-AahI Fab along with complementary data from a flexible docking approach suggests occurrence of distinctive trapping orientations for the two toxins relative to their respective Fab. This study provides complementary templates for designing new molecules aimed at capturing Aah α-toxins and suitable for immunotherapy
    corecore