59 research outputs found

    Kalman Filter Input Processor for Boresight Calibration

    Get PDF
    Ka-band ranging provides the phase center (PC) to phase center range, which needs to be converted to the center of mass (CM) to center of mass range. Nominally, both PC and CM lie on the line connecting the spacecraft GRAIL A and GRAIL B. In this case, the conversion should be done simply by adding the CM-to-PC distance L to the measured range for both spacecraft. However, due to various technical reasons, such as displacement of the true CM from its nominal position in the SRF, or spacecraft attitude fluctuations, the PC and CM define a unit vector that may be different from the nominal line of sight. The objectives of the software are to determine the actual line of sight direction for each spacecraft and correct the previously recorded range data, and to provide instructions for how to maneuver each spacecraft to make necessary attitude corrections

    Description and User Instructions for the Quaternion_to_Orbit_v3 Software

    Get PDF
    For a given inertial frame of reference, the software combines the spacecraft orbits with the spacecraft attitude quaternions, and rotates the body-fixed reference frame of a particular spacecraft to the inertial reference frame. The conversion assumes that the two spacecraft are aligned with respect to the mutual line of sight, with a parameterized time tag. The software is implemented in Python and is completely open source. It is very versatile, and may be applied under various circumstances and for other related purposes. Based on the solid linear algebra analysis, it has an extra option for compensating the linear pitch. This software has been designed for simulation of the calibration maneuvers performed by the two spacecraft comprising the GRAIL mission to the Moon, but has potential use for other applications. In simulations of formation flights, one needs to coordinate the spacecraft orbits represented in an appropriate inertial reference frame and the spacecraft attitudes. The latter are usually given as the time series of quaternions rotating the body-fixed reference frame of a particular spacecraft to the inertial reference frame. It is often desirable to simulate the same maneuver for different segments of the orbit. It is also useful to study various maneuvers that could be performed at the same orbit segment. These two lines of study are more timeand labor-efficient if the attitude and orbit data are generated independently, so that the part of the data that has not been changed can be recycled in the course of multiple simulations

    Bright microwave pulses from PSR B0531+21 observed with a prototype transient survey receiver

    Get PDF
    Recent discoveries of transient radio events have renewed interest in time-variable astrophysical phenomena. Many radio transient events are rare, requiring long observing times for reliable statistical study. The National Aeronautics and Space Administration/Jet Propulsion Laboratory\u27s Deep Space Network (DSN) tracks spacecraft nearly continuously with 13 large-aperture, low system temperature radio antennas. During normal spacecraft operations, the DSN processes only a small fraction of the pre-detection bandwidth available from these antennas; any information in the remaining bandwidth, e.g., from an astronomical source in the same antenna beam as the spacecraft, is currently ignored. As a firmware modification to the standard DSN tracking receiver, we built a prototype receiver that could be used for astronomical transient surveys. Here, we demonstrate the receiver\u27s utility through observations of bright pulses from the Crab pulsar and describe attributes of potential transient survey observations piggybacking on operational DSN tracks. © 2014. The American Astronomical Society. All rights reserved.

    Report on first inflight data of bepicolombo’s mercury orbiter radio-science experiment

    Get PDF
    BepiColombo’s Mercury Orbiter Radio-science Experiment (MORE) was conceived to enable extremely accurate radio tracking measurements of the Mercury Planetary Orbiter to precisely determine the gravity field and rotational state of Mercury, and to test theories of gravitation (e. g. Einstein’s Theory of General Relativity). The design accuracy of the radio tracking data was 0.004 mm/sec (at 1000 s integration time) for range-rate measurements and 20 cm for range (at a few seconds of integration time). These accuracies are attained due to a combination of simultaneous two-way microwave links at X (7.2-8.4 GHz) and Kaband (32-34 GHz) to calibrate the dispersive plasma noise component. In this letter, we present the first analysis of range and range-rate data collected by ESA’s deep space antenna (DSA) during the initial cruise phase of BepiColombo. The novel 24 Mcps pseudo-noise (PN) modulation of the Ka-band carrier, enabled by MORE’s Ka-band Transponder (KaT), built by Thales Alenia Space Italy, provided two-way range measurements to centimeterlevel accuracy, with an integration time of 4.2 s at 0.29 astronomical units. In tracking passes with favorable weather conditions, range-rate measurements attained an average accuracy of 0.01 mm/s at 60 s integration time. Data from 20 to 24 May 2019 were combined in a multi-pass analysis to test the link stability on a longer timescale. The results confirm the noise level observed with the single-pass analysis and provide a preliminary indication that the MORE PN ranging system at 24 Mcps is compatible with the realization of an absolute measurement, where the need to introduce range biases in the orbital fit is much more limited than in the past. We show that in the initial cruise test the BepiColombo radio link provided range measurements of unprecedented accuracy for a planetary mission, and that, in general, all target accuracies for radio-metric measurements were exceeded

    The Scientific Measurement System of the Gravity Recovery and Interior Laboratory (GRAIL) Mission

    Get PDF
    The Gravity Recovery and Interior Laboratory (GRAIL) mission to the Moon utilized an integrated scientific measurement system comprised of flight, ground, mission, and data system elements in order to meet the end-to-end performance required to achieve its scientific objectives. Modeling and simulation efforts were carried out early in the mission that influenced and optimized the design, implementation, and testing of these elements. Because the two prime scientific observables, range between the two spacecraft and range rates between each spacecraft and ground stations, can be affected by the performance of any element of the mission, we treated every element as part of an extended science instrument, a science system. All simulations and modeling took into account the design and configuration of each element to compute the expected performance and error budgets. In the process, scientific requirements were converted to engineering specifications that became the primary drivers for development and testing. Extensive simulations demonstrated that the scientific objectives could in most cases be met with significant margin. Errors are grouped into dynamic or kinematic sources and the largest source of non-gravitational error comes from spacecraft thermal radiation. With all error models included, the baseline solution shows that estimation of the lunar gravity field is robust against both dynamic and kinematic errors and a nominal field of degree 300 or better could be achieved according to the scaled Kaula rule for the Moon. The core signature is more sensitive to modeling errors and can be recovered with a small margin

    Revised Thickness of the Lunar Crust from GRAIL Data: Implications for Lunar Bulk Composition

    Get PDF
    High-resolution gravity data from GRAIL have yielded new estimates of the bulk density and thickness of the lunar crust. The bulk density of the highlands crust is 2550 kg m-3. From a comparison with crustal composition measured remotely, this density implies a mean porosity of 12%. With this bulk density and constraints from the Apollo seismic experiment, the average global crustal thickness is found to lie between 34 and 43 km, a value 10 to 20 km less than several previous estimates. Crustal thickness is a central parameter in estimating bulk lunar composition. Estimates of the concentrations of refractory elements in the Moon from heat flow, remote sensing and sample data, and geophysical data fall into two categories: those with refractory element abundances enriched by 50% or more relative to Earth, and those with abundances the same as Earth. Settling this issue has implications for processes operating during lunar formation. The crustal thickness resulting from analysis of GRAIL data is less than several previous estimates. We show here that a refractory-enriched Moon is not require

    Gravity Recovery and Interior Laboratory (GRAIL): Extended Mission and End-Game Status

    Get PDF
    The Gravity Recovery and Interior Laboratory (GRAIL) [1], NASA s eleventh Discovery mission, successfully executed its Primary Mission (PM) in lunar orbit between March 1, 2012 and May 29, 2012. GRAIL s Extended Mission (XM) initiated on August 30, 2012 and was successfully completed on December 14, 2012. The XM provided an additional three months of gravity mapping at half the altitude (23 km) of the PM (55 km), and is providing higherresolution gravity models that are being used to map the upper crust of the Moon in unprecedented detail

    Preliminary Results on Lunar Interior Properties from the GRAIL Mission

    Get PDF
    The Gravity Recovery and Interior Laboratory (GRAIL) mission has provided lunar gravity with unprecedented accuracy and resolution. GRAIL has produced a high-resolution map of the lunar gravity field while also determining tidal response. We present the latest gravity field solution and its preliminary implications for the Moon's interior structure, exploring properties such as the mean density, moment of inertia of the solid Moon, and tidal potential Love number k2. Lunar structure includes a thin crust, a deep mantle, a fluid core, and a suspected solid inner core. An accurate Love number mainly improves knowledge of the fluid core and deep mantle. In the future GRAIL will search for evidence of tidal dissipation and a solid inner core
    • …
    corecore