106 research outputs found

    Necrotizing enteritis associated with Clostridium perfringensType B in chinchillas (Chinchilla lanigera)

    Full text link
    Four 3-4 month-old chinchillas (Chinchilla lanigera) from a commercial flock of 395 chinchillas, were found dead with evidence of previous diarrhea and prolapsed rectum. A fifth 8 month-old chinchilla died 8 hours after being found recumbent, apathetic, diarrheic and with a prolapsed rectum. Two chinchillas were necropsied and observed gross lesions consisted of extensive hemorrhagic enteritis, mild pulmonary edema and enlarged and yellow liver; this latter finding was particularly prominent in the chinchilla presenting longer clinical course. Histologically there was necrotizing enteritis associated with abundant bacterial rods aggregates in the intestinal surface epithelium and within the lamina propria. In the lungs there were small amounts of pink proteinaceous material (edema) in the interstitium and marked vacuolar hepatocellullar degeneration (lipidosis) in the liver. Anaerobic cultures from the intestinal contents of one of the affected chinchillas yielded Clostridium perfringens. Genotyping of this C. perfringens isolate was achieved by multiplex polymerase chain reaction (mPCR) as C. perfringenstype B due to detection of alpha, beta and epsilon-toxin genes. These findings suggest C. perfringens type B as an important cause of sudden or acute death in chinchillas

    A comparative study of uracil-DNA glycosylases from human and herpes simplex virus type 1

    Get PDF
    Uracil-DNA glycosylase (UNG) is the key enzyme responsible for initiation of base excision repair. We have used both kinetic and binding assays for comparative analysis of UNG enzymes from humans and herpes simplex virus type 1 (HSV-1). Steady-state fluorescence assays showed that hUNG has a much higher specificity constant (kcat/Km) compared with the viral enzyme due to a lower Km. The binding of UNG to DNA was also studied using a catalytically inactive mutant of UNG and non-cleavable substrate analogs (2′-deoxypseudouridine and 2′-α-fluoro-2′-deoxyuridine). Equilibrium DNA binding revealed that both human and HSV-1 UNG enzymes bind to abasic DNA and both substrate analogs more weakly than to uracil-containing DNA. Structure determination of HSV-1 D88N/H210N UNG in complex with uracil revealed detailed information on substrate binding. Together, these results suggest that a significant proportion of the binding energy is provided by specific interactions with the target uracil. The kinetic parameters for human UNG indicate that it is likely to have activity against both U·A and U·G mismatches in vivo. Weak binding to abasic DNA also suggests that UNG activity is unlikely to be coupled to the subsequent common steps of base excision repair
    corecore