85 research outputs found

    Studies on the Phytodiversity of a Sacred Grove and its Traditional Uses in Karaikal District, U.T. Puducherry

    Get PDF
    India is a land of diverse natural resources with the strong traditions of nature conservation practices. The sacred groves are the representatives of climax vegetation and exhibit the diversity of species such as trees, climbers, epiphytes and other shade loving herbs. Well-preserved sacred groves are storehouses of valuable medicinal and other plants having high economic value and serve as a refuge to threatened species. The present paper deals with floristic composition of angiosperms grown in a sacred grove located in Karaikal district and to document its traditional medicinal uses. The present work also elucidates the species composition of 59 plants species of flowering plants which spreads in 55 genera and 30 families. Many rural people in the district were using the plants from the sacred grove to cure many common diseases. This kind of degraded sacred groves should be immediately restored or regenerated using appropriate technologies and by raising awareness among the rural people regarding the importance of sacred grove and its conservation

    Effects of solar eclipse on photosynthesis of Portulaca oleracea and Phyla nodiflora in coastal wild conditions

    Get PDF
    The total solar eclipse provided a unique opportunity to understand the effects of solar radiation on the biosphere. The present study attempts to record meteorological parameters and to compare chlorophyll contents of Portulaca oleracea and Phyla nodiflora in coastal wild conditions during total solar eclipse on July 22, 2009.  Changes in meteorological parameters such as temperature by 0.5ËšC, relative humidity by 4% and light intensity around 100 lux were set to be low during eclipse day when compared to that of corresponding week. Minor changes were also observed in the wind speed and direction during solar eclipse day.  Mature leaves of Portulaca oleracea and Phyla nodiflora from coastal wild conditions were collected and analysed for total chlorophyll, chlorophyll a, chlorophyll b and carotinoid contents at various time intervals during solar eclipse day and previous days. Chlorophyll levels were decreased slightly during solar eclipse day, whereas carotinoid levels were increased marginally in both the plant species.  Solar radiation and its photochemical phases during eclipse day are responsible for the observed reduction in photosynthetic rates of wild plants

    Local Knowledge and Conservation of Seagrasses in the Tamil Nadu State of India

    Get PDF
    Local knowledge systems are not considered in the conservation of fragile seagrass marine ecosystems. In fact, little is known about the utility of seagrasses in local coastal communities. This is intriguing given that some local communities rely on seagrasses to sustain their livelihoods and have relocated their villages to areas with a rich diversity and abundance of seagrasses. The purpose of this study is to assist in conservation efforts regarding seagrasses through identifying Traditional Ecological Knowledge (TEK) from local knowledge systems of seagrasses from 40 coastal communities along the eastern coast of India. We explore the assemblage of scientific and local traditional knowledge concerning the 1. classification of seagrasses (comparing scientific and traditional classification systems), 2. utility of seagrasses, 3. Traditional Ecological Knowledge (TEK) of seagrasses, and 4. current conservation efforts for seagrass ecosystems. Our results indicate that local knowledge systems consist of a complex classification of seagrass diversity that considers the role of seagrasses in the marine ecosystem. This fine-scaled ethno-classification gives rise to five times the number of taxa (10 species = 50 local ethnotaxa), each with a unique role in the ecosystem and utility within coastal communities, including the use of seagrasses for medicine (e.g., treatment of heart conditions, seasickness, etc.), food (nutritious seeds), fertilizer (nutrient rich biomass) and livestock feed (goats and sheep). Local communities are concerned about the loss of seagrass diversity and have considerable local knowledge that is valuable for conservation and restoration plans. This study serves as a case study example of the depth and breadth of local knowledge systems for a particular ecosystem that is in peril

    Trace elemental analysis and antimicrobial activities of Elephantopus scaber L.

    Get PDF
    Screening of various Indian medicinal plants has various degrees of antimicrobial activities against pathogenic and opportunistic microorganisms.  Since the number of effective exogenous antibiotics is decreasing, concerted efforts are to be made to identify antimicrobial materials from natural products and traditional medicines. In the present study, we are reporting the antimicrobial activity of the traditionally used Ayurvedic medicinal plant Elephantopus scaber and its elemental composition analysis.  The antimicrobial activities are found to be higher in leaf extracts of Elephantopus scaber whereas no inhibition was found for root extracts. The elements such as Si, Ca, Cl, Mg, S, K and P are more abundant in the leaf than the root whereas heavy metals are higher in roots than in leaves. In the root, presence of Al, Fe, Ti, Sr, and V is more when compared to leaves whereas Zn, Cu, As, Rb and Sr are less available and are equally present in roots as well as leaf. The elements Cr, Co, Ni, Se, Br and Pb are not found in both leaves and roots

    Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria

    Get PDF
    Successful treatment of human tuberculosis requires 6–9 months' therapy with multiple antibiotics. Incomplete clearance of tubercle bacilli frequently results in disease relapse, presumably as a result of reactivation of persistent drug-tolerant Mycobacterium tuberculosis cells, although the nature and location of these persisters are not known. In other pathogens, antibiotic tolerance is often associated with the formation of biofilms – organized communities of surface-attached cells – but physiologically and genetically defined M. tuberculosis biofilms have not been described. Here, we show that M. tuberculosis forms biofilms with specific environmental and genetic requirements distinct from those for planktonic growth, which contain an extracellular matrix rich in free mycolic acids, and harbour an important drug-tolerant population that persist despite exposure to high levels of antibiotics

    The clinical features of the piriformis syndrome: a systematic review

    Get PDF
    Piriformis syndrome, sciatica caused by compression of the sciatic nerve by the piriformis muscle, has been described for over 70 years; yet, it remains controversial. The literature consists mainly of case series and narrative reviews. The objectives of the study were: first, to make the best use of existing evidence to estimate the frequencies of clinical features in patients reported to have PS; second, to identify future research questions. A systematic review was conducted of any study type that reported extractable data relevant to diagnosis. The search included all studies up to 1 March 2008 in four databases: AMED, CINAHL, Embase and Medline. Screening, data extraction and analysis were all performed independently by two reviewers. A total of 55 studies were included: 51 individual and 3 aggregated data studies, and 1 combined study. The most common features found were: buttock pain, external tenderness over the greater sciatic notch, aggravation of the pain through sitting and augmentation of the pain with manoeuvres that increase piriformis muscle tension. Future research could start with comparing the frequencies of these features in sciatica patients with and without disc herniation or spinal stenosis

    A Screen for Genes Expressed in the Olfactory Organs of Drosophila melanogaster Identifies Genes Involved in Olfactory Behaviour

    Get PDF
    BACKGROUND: For insects the sense of smell and associated olfactory-driven behaviours are essential for survival. Insects detect odorants with families of olfactory receptor proteins that are very different to those of mammals, and there are likely to be other unique genes and genetic pathways involved in the function and development of the insect olfactory system. METHODOLOGY/PRINCIPAL FINDINGS: We have performed a genetic screen of a set of 505 Drosophila melanogaster gene trap insertion lines to identify novel genes expressed in the adult olfactory organs. We identified 16 lines with expression in the olfactory organs, many of which exhibited expression of the trapped genes in olfactory receptor neurons. Phenotypic analysis showed that six of the lines have decreased olfactory responses in a behavioural assay, and for one of these we showed that precise excision of the P element reverts the phenotype to wild type, confirming a role for the trapped gene in olfaction. To confirm the identity of the genes trapped in the lines we performed molecular analysis of some of the insertion sites. While for many lines the reported insertion sites were correct, we also demonstrated that for a number of lines the reported location of the element was incorrect, and in three lines there were in fact two pGT element insertions. CONCLUSIONS/SIGNIFICANCE: We identified 16 new genes expressed in the Drosophila olfactory organs, the majority in neurons, and for several of the gene trap lines demonstrated a defect in olfactory-driven behaviour. Further characterisation of these genes and their roles in olfactory system function and development will increase our understanding of how the insect olfactory system has evolved to perform the same essential function to that of mammals, but using very different molecular genetic mechanisms

    Modifier Effects between Regulatory and Protein-Coding Variation

    Get PDF
    Genome-wide associations have shown a lot of promise in dissecting the genetics of complex traits in humans with single variants, yet a large fraction of the genetic effects is still unaccounted for. Analyzing genetic interactions between variants (epistasis) is one of the potential ways forward. We investigated the abundance and functional impact of a specific type of epistasis, namely the interaction between regulatory and protein-coding variants. Using genotype and gene expression data from the 210 unrelated individuals of the original four HapMap populations, we have explored the combined effects of regulatory and protein-coding single nucleotide polymorphisms (SNPs). We predict that about 18% (1,502 out of 8,233 nsSNPs) of protein-coding variants are differentially expressed among individuals and demonstrate that regulatory variants can modify the functional effect of a coding variant in cis. Furthermore, we show that such interactions in cis can affect the expression of downstream targets of the gene containing the protein-coding SNP. In this way, a cis interaction between regulatory and protein-coding variants has a trans impact on gene expression. Given the abundance of both types of variants in human populations, we propose that joint consideration of regulatory and protein-coding variants may reveal additional genetic effects underlying complex traits and disease and may shed light on causes of differential penetrance of known disease variants

    Differential transcriptomic profiles effected by oil palm phenolics indicate novel health outcomes

    Get PDF
    Abstract Background Plant phenolics are important nutritional antioxidants which could aid in overcoming chronic diseases such as cardiovascular disease and cancer, two leading causes of death in the world. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics which have high antioxidant activities. This study aimed to identify the in vivo effects and molecular mechanisms involved in the biological activities of oil palm phenolics (OPP) during healthy states via microarray gene expression profiling, using mice supplemented with a normal diet as biological models. Results Having confirmed via histology, haematology and clinical biochemistry analyses that OPP is not toxic to mice, we further explored the gene expression changes caused by OPP through statistical and functional analyses using Illumina microarrays. OPP showed numerous biological activities in three major organs of mice, the liver, spleen and heart. In livers of mice given OPP, four lipid catabolism genes were up-regulated while five cholesterol biosynthesis genes were down-regulated, suggesting that OPP may play a role in reducing cardiovascular disease. OPP also up-regulated eighteen blood coagulation genes in spleens of mice. OPP elicited gene expression changes similar to the effects of caloric restriction in the hearts of mice supplemented with OPP. Microarray gene expression fold changes for six target genes in the three major organs tested were validated with real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and the correlation of fold changes obtained with these two techniques was high (R2 = 0.9653). Conclusions OPP showed non-toxicity and various pleiotropic effects in mice. This study implies the potential application of OPP as a valuable source of wellness nutraceuticals, and further suggests the molecular mechanisms as to how dietary phenolics work in vivo.</p
    corecore