19 research outputs found

    Invariant Solutions of the Two-Dimensional Shallow Water Equations with a Particular Class of Bottoms

    Full text link
    The two-dimensional shallow water equations with a particular bottom and the Coriolis's force f=f0+Ωyf=f_{0}+\Omega y are studied in this paper. The main goal of the paper is to describe all invariant solutions for which the reduced system is a system of ordinary differential equations. For solving the systems of ordinary differential equations we use the sixth-order Runge-Kutta method.Comment: 7 pages, 9 figures, Submitted to AIP Conference Proceedings 2164, 050003 (2019

    Translational recoding: Canonical translation mechanisms reinterpreted.

    No full text
    During canonical translation, the ribosome moves along an mRNA from the start to the stop codon in exact steps of one codon at a time. The collinearity of the mRNA and the protein sequence is essential for the quality of the cellular proteome. Spontaneous errors in decoding or translocation are rare and result in a deficient protein. However, dedicated recoding signals in the mRNA can reprogram the ribosome to read the message in alternative ways. This review summarizes the recent advances in understanding the mechanisms of three types of recoding events: stop-codon readthrough, -1 ribosome frameshifting and translational bypassing. Recoding events provide insights into alternative modes of ribosome dynamics that are potentially applicable to other non-canonical modes of prokaryotic and eukaryotic translation

    NIBBS-Search for Fast and Accurate Prediction of Phenotype-Biased Metabolic Systems

    Get PDF
    Understanding of genotype-phenotype associations is important not only for furthering our knowledge on internal cellular processes, but also essential for providing the foundation necessary for genetic engineering of microorganisms for industrial use (e.g., production of bioenergy or biofuels). However, genotype-phenotype associations alone do not provide enough information to alter an organism's genome to either suppress or exhibit a phenotype. It is important to look at the phenotype-related genes in the context of the genome-scale network to understand how the genes interact with other genes in the organism. Identification of metabolic subsystems involved in the expression of the phenotype is one way of placing the phenotype-related genes in the context of the entire network. A metabolic system refers to a metabolic network subgraph; nodes are compounds and edges labels are the enzymes that catalyze the reaction. The metabolic subsystem could be part of a single metabolic pathway or span parts of multiple pathways. Arguably, comparative genome-scale metabolic network analysis is a promising strategy to identify these phenotype-related metabolic subsystems. Network Instance-Based Biased Subgraph Search (NIBBS) is a graph-theoretic method for genome-scale metabolic network comparative analysis that can identify metabolic systems that are statistically biased toward phenotype-expressing organismal networks. We set up experiments with target phenotypes like hydrogen production, TCA expression, and acid-tolerance. We show via extensive literature search that some of the resulting metabolic subsystems are indeed phenotype-related and formulate hypotheses for other systems in terms of their role in phenotype expression. NIBBS is also orders of magnitude faster than MULE, one of the most efficient maximal frequent subgraph mining algorithms that could be adjusted for this problem. Also, the set of phenotype-biased metabolic systems output by NIBBS comes very close to the set of phenotype-biased subgraphs output by an exact maximally-biased subgraph enumeration algorithm ( MBS-Enum ). The code (NIBBS and the module to visualize the identified subsystems) is available at http://freescience.org/cs/NIBBS

    Activity of Farmers of Kashkadarya Region in the Field of Agriculture during the Second World War

    No full text
    This article, through scientific sources and historical literature, highlights the worthy contribution of the inhabitants of the Kashkadarya region during the Second World War due to their hard work in the field of agriculture, both at the front and in the rear

    Modulation of HIV-1 Gag/Gag-Pol frameshifting by tRNA abundance.

    No full text
    A hallmark of translation in human immunodeficiency virus type 1 (HIV-1) is a -1 programmed ribosome frameshifting event that produces the Gag-Pol fusion polyprotein. The constant Gag to Gag-Pol ratio is essential for the virion structure and infectivity. Here we show that the frameshifting efficiency is modulated by Leu-tRNALeu that reads the UUA codon at the mRNA slippery site. This tRNALeu isoacceptor is particularly rare in human cell lines derived from T-lymphocytes, the cells that are targeted by HIV-1. When UUA decoding is delayed, the frameshifting follows an alternative route, which maintains the Gag to Gag-Pol ratio constant. A second potential slippery site downstream of the first one is normally inefficient but can also support -1-frameshifting when altered by a compensatory resistance mutation in response to current antiviral drug therapy. Together these different regimes allow the virus to maintain a constant -1-frameshifting efficiency to ensure successful virus propagation
    corecore