62 research outputs found
A tüdőrák molekuláris diagnosztikája
Development of the target therapies of lung cancer was a rapid process which fundamentally changed the pathological diagnosis as well. Furthermore, molecular pathology became essential part of the routine diagnostics of lung cancer. These changes generated several practical problems and in underdeveloped countries or in those with reimbursement problems have been combined with further challenges. The central and eastern region of Europe are characterized by similar problems in this respect which promoted the foundation of NSCLC Working Group to provide up to date protocols or guidelines. This present paper is a summary of the molecular pathology and target therapy guidelines written with the notion that it has to be upgraded continuously according to the development of the field
Chromosome 7 gain and DNA hypermethylation at the HOXA10 locus are associated with expression of a stem cell related HOX-signature in glioblastoma.
BACKGROUND: HOX genes are a family of developmental genes that are expressed neither in the developing forebrain nor in the normal brain. Aberrant expression of a HOX-gene dominated stem-cell signature in glioblastoma has been linked with increased resistance to chemo-radiotherapy and sustained proliferation of glioma initiating cells. Here we describe the epigenetic and genetic alterations and their interactions associated with the expression of this signature in glioblastoma.
RESULTS: We observe prominent hypermethylation of the HOXA locus 7p15.2 in glioblastoma in contrast to non-tumoral brain. Hypermethylation is associated with a gain of chromosome 7, a hallmark of glioblastoma, and may compensate for tumor-driven enhanced gene dosage as a rescue mechanism by preventing undue gene expression. We identify the CpG island of the HOXA10 alternative promoter that appears to escape hypermethylation in the HOX-high glioblastoma. An additive effect of gene copy gain at 7p15.2 and DNA methylation at key regulatory CpGs in HOXA10 is significantly associated with HOX-signature expression. Additionally, we show concordance between methylation status and presence of active or inactive chromatin marks in glioblastoma-derived spheres that are HOX-high or HOX-low, respectively.
CONCLUSIONS: Based on these findings, we propose co-evolution and interaction between gene copy gain, associated with a gain of chromosome 7, and additional epigenetic alterations as key mechanisms triggering a coordinated, but inappropriate, HOX transcriptional program in glioblastoma
Important steps towards a big change for lung health: a joint approach by the European Respiratory Society, the European Society of Radiology and their partners to facilitate implementation of the European Union's new recommendations on lung cancer screening.
Enormous progress has been made on the epic journey towards implementation of lung cancer screening in Europe. A breakthrough for lung health has been achieved with the EU proposal for a Council recommendation on cancer screening. https://bit.ly/3J4O0Jb
Ki67 index is an independent prognostic factor in epithelioid but not in non-epithelioid malignant pleural mesothelioma: a multicenter study
BACKGROUND: Estimating the prognosis in malignant pleural mesothelioma (MPM) remains challenging. Thus, the prognostic relevance of Ki67 was studied in MPM. METHODS: Ki67 index was determined in a test cohort of 187 cases from three centres. The percentage of Ki67-positive tumour cells was correlated with clinical variables and overall survival (OS). The prognostic power of Ki67 index was compared with other prognostic factors and re-evaluated in an independent cohort (n=98). RESULTS: Patients with Ki67 higher than median (>15%) had significantly (P<0.001) shorter median OS (7.5 months) than those with low Ki67 (19.1 months). After multivariate survival analyses, Ki67 proved to be-beside histology and treatment-an independent prognostic marker in MPM (hazard ratio (HR): 2.1, P<0.001). Interestingly, Ki67 was prognostic exclusively in epithelioid (P<0.001) but not in non-epithelioid subtype. Furthermore, Ki67 index was significantly lower in post-chemotherapy samples when compared with chemo-naive cases. The prognostic power was comparable to other recently published prognostic factors (CRP, fibrinogen, neutrophil-to-leukocyte ratio (NLR) and nuclear grading score) and was recapitulated in the validation cohort (P=0.048). CONCLUSION: This multicentre study demonstrates that Ki67 is an independent and reproducible prognostic factor in epithelioid but not in non-epithelioid MPM and suggests that induction chemotherapy decreases the proliferative capacity of MPM
Circulating fibrinogen is a prognostic and predictive biomarker in malignant pleural mesothelioma.
Background:To investigate the clinical utility of pretreatment plasma fibrinogen levels in malignant pleural mesothelioma (MPM) patients.Methods:A retrospective multicenter study was performed in histologically proven MPM patients. All fibrinogen levels were measured at the time of diagnosis and clinical data were retrospectively collected after approval of the corresponding ethics committees.Results:In total, 176 MPM patients (mean age: 63.5 years+/-10.4 years, 38 females and 138 males) were analysed. Most patients (n=154, 87.5%) had elevated (>/=390 mg dl-1) plasma fibrinogen levels. When patients were grouped by median fibrinogen, patients with low level (</=627 mg dl-1) had significantly longer overall survival (OS) (19.1 months, confidence interval (CI) 14.5-23.7 months) when compared with those with high level (OS 8.5; CI 6.2-10.7 months). In multivariate survival analyses, fibrinogen was found to be an independent prognostic factor (hazard ratio 1.81, CI 1.23-2.65). Most interestingly, fibrinogen (cutoff 75th percentile per 750 mg dl-1) proved to be a predictive biomarker indicating treatment benefit achieved by surgery within multimodality therapy (interaction term: P=0.034). Accordingly, only patients below the 75th percentile benefit from surgery within multimodality therapy (31.3 vs 5.3 months OS).Conclusions:Fibrinogen is a novel independent prognostic biomarker in MPM. Most importantly, fibrinogen predicted treatment benefit achieved by surgery within multimodality therapy.British Journal of Cancer advance online publication, 16 January 2014; doi:10.1038/bjc.2013.815 www.bjcancer.com
Active Wnt signaling in response to cardiac injury
Although the contribution of Wnt signaling in infarct healing is suggested, its exact role after myocardial infarction (MI) still needs to be unraveled. We evaluated the cardiac presence of active Wnt signaling in vivo following MI, and investigated in which cell types active Wnt signaling was present by determining Axin2 promoter-driven LacZ expression. C57BL/6 Axin2-LacZ reporter mice were sacrificed at days 0, 1, 3, 7, 14, and 21 after LAD ligation. Hearts were snap-frozen for immunohistochemistry (IHC) or enzymatically digested to obtain a single cell suspension for flow cytometric analysis. For both FACS and IHC, samples were stained for β-galactosidase and antibodies against Sca-1, CD31, ckit, and CD45. Active Wnt signaling increased markedly in the myocardium, from 7 days post-MI onwards. Using Sca-1 and CD31, to identify progenitor and endothelial cells, a significant increase in LacZ+ cells was found at 7 and 14 days post-MI. LacZ+ cells also increased in the ckit+ and CD45+ cell population. IHC revealed LacZ+ cells co-expressing Sca, CD31, CD45, vWF, and αSMA in the border zone and the infarcted area. Wnt signaling increased significantly after MI in Sca+- and CD31+-expressing cells, suggesting involvement of Wnt signaling in resident Sca+ progenitor cells, as well as endothelial cells. Moreover, active Wnt signaling was present in ckit+ cells, leukocytes, and fibroblast. Given its broad role during the healing phase after cardiac injury, additional research seems warranted before a therapeutic approach on Wnt to enhance cardiac regeneration can be carried out safely
Segregation of myoblast fusion and muscle-specific gene expression by distinct ligand-dependent inactivation of GSK-3β
Myogenic differentiation involves myoblast fusion and induction of muscle-specific gene expression, which are both stimulated by pharmacological (LiCl), genetic, or IGF-I-mediated GSK-3β inactivation. To assess whether stimulation of myogenic differentiation is common to ligand-mediated GSK-3β inactivation, myoblast fusion and muscle-specific gene expression were investigated in response to Wnt-3a. Moreover, crosstalk between IGF-I/GSK-3β/NFATc3 and Wnt/GSK-3β/β-catenin signaling was assessed. While both Wnt-3a and LiCl promoted myoblast fusion, muscle-specific gene expression was increased by LiCl, but not by Wnt-3a or β-catenin over-expression. Furthermore, LiCl and IGF-I, but not Wnt-3a, increased NFATc3 transcriptional activity. In contrast, β-catenin-dependent transcriptional activity was increased by Wnt-3a and LiCl, but not IGF-I. These results for the first time reveal a segregated regulation of myoblast fusion and muscle-specific gene expression following stimulation of myogenic differentiation in response to distinct ligand-specific signaling routes of GSK-3β inactivation
- …