17 research outputs found

    The effect of ultrasound pretreatment on some selected physicochemical properties of black cumin (Nigella Sativa)

    Get PDF
    Background In the present study, the effects of ultrasound pretreatment parameters including irradiation time and power on the quantity of the extracted phenolic compounds quantity as well as on some selected physicochemical properties of the extracted oils including oil extraction efficiency, acidity and peroxide values, color, and refractive index of the extracted oil of black cumin seeds with the use of cold press have been studied. Methods For each parameter, three different levels (30, 60, and 90 W) for the ultrasound power and (30, 45, and 60 min) and for the ultrasound irradiation time were studied. Each experiment was performed in three replications. Results The achieved results revealed that, with enhancements in the applied ultrasound power, the oil extraction efficiency, acidity value, total phenolic content, peroxide value, and color parameters increased significantly (P 0.05). Conclusions In summary, it could be mentioned that the application of ultrasound pretreatment in the oil extraction might improve the oil extraction efficiency, the extracted oil’s quality, and the extracted phenolic compounds content.info:eu-repo/semantics/publishedVersio

    Soy protein–gum karaya conjugate: emulsifying activity and rheological behavior in aqueous system and oil in water emulsion

    Get PDF
    The main objective of this study is to investigate the effects of mixing and conjugation of soy protein isolate (SPI) with gum karaya on the characteristics of the hybrid polymer (protein–gum) in both aqueous systems and oil-in-water (O/W) emulsions. It was hypothesized that the covalent linkage of gum karaya with SPI would improve the emulsifying activity and rheological properties of both polymers. Conjugation occurred under controlled conditions (i.e., 60 °C and 75 % relative humidity, 3 days). The conjugated hybrid polymer produced smaller droplet with better uniformity, higher viscosity and stronger emulsifying activity than native gum karaya, suggesting the conjugated polymer provided a bulkier secondary layer with more efficient coverage around oil droplets, thereby inducing stronger resistance against droplet aggregation and flocculation. Emulsions containing the native gum karaya produced the largest droplet size among all prepared emulsions (D 3,2 = 8.6 μm; D 4,3 = 22.4 μm); while the emulsion containing protein–gum conjugate (1:1 g/g) had the smallest droplet size (D 3,2 = 0.2 μm; D 4,3 = 0.7 μm) with lower polydispersity. The protein–gum conjugate (1:1 g/g) also showed the highest elastic and viscous modulus, the lowest polydispersity (span) and the highest emulsifying activity among all native, mixed and conjugated polymers. Therefore, the percentage of gum karaya used for production of O/W emulsion can be decreased by partially replacing it with the conjugated gum

    Characterization of virgin avocado oil obtained via advanced green technique

    Get PDF
    The quality characteristics, bioactive phytochemicals, volatile compounds, and antioxidant capacities of virgin avocado oil extracted using a couple of green methods, namely, subcritical CO2 extraction (SCO2) and ultrasound‐assisted aqueous extraction (UAAE), are compared with the oil extracted using the conventional solvent extraction. Results indicate the quality properties of avocado oil are unaffected by extraction methods. The total phenolic content of avocado oil is in the range of 111.27–130.17 mg GAE/100 g and the major phytosterol is β‐sitosterol (1.91–2.47 g kg−1). Avocado oil extracted using SCO2 exhibits two to four times greater levels of α‐ and γ‐tocopherols than solvent extraction and UAAE. The volatile components associated with nutty and grassy flavors are only detected in avocado oil extracted under low‐temperature extraction conditions such as SCO2 and UAAE. Based on the antioxidant capacity tests, avocado oil obtained by SCO2 exhibits the strongest antioxidant capacity compared with solvent extraction and UAAE
    corecore