11 research outputs found

    Combination chemo-PDT ionic nanomedicines as enhanced therapeutics for cancer

    No full text
    Cancer remains as one of the leading causes of death in humans worldwide. Nanotechnology has made great strides in improving treatment for the disease. This work describes a simplistic approach to design self-assembled combination nanomedicines. A facile one-step ion exchange reaction is utilized to combine a chemotherapeutic (phosphonium) cation and photodynamic therapeutic (porphyrin) anion. An aqueous nanomedicine is prepared from the hydrophobic ionic combination drug via a single-step reprecipitation method. Upon conversion to ionic combination drug, improved photophysical properties of porphyrin were observed. These characteristics subsequently led to increased photodynamic therapeutic activity of nanomedicines—explained by greater singlet oxygen quantum yield. The dark and light cytotoxicity of combination therapy nanomedicines in MCF-7 (cancerous breast) cell line is also increased as compared to corresponding parent compounds in vitro. This is due to high cellular uptake of the combination nanomedicines as compared to free drug as well as enhanced photophysical properties

    Carrier-free Chemo-PTT/PDT ionic nanomaterials for combination cancer therapy

    No full text
    Herein, we describe a carrier-free combination nanodrug for treatment of cancer. In this work, we combined a photothermal compound and a chemotherapeutic drug using ionic liquid chemistry. We utilized a facile, one-step metathesis approach to replace the counter cation of a near infra-red (NIR) dye (photothermal agent) with a chemotherapeutic cation to synthesize an ionic material-based combination cancer therapy drug to deliver multiple mechanisms simultaneously. The nanodrugs were developed by using a reprecipitation method. The detailed photophysical properties of this new combination therapy molecule was investigated in ethanol solution as well as in nanoparticles forms in aqueous media. The singlet oxygen quantum yield and the light to heat conversion efficiency of the photothermal dyes were shown to be enhanced in combination nanodrugs. The dark and light cytotoxicity of the combination nanomedicine was investigated in vitro in the human breast cancer cell line (MCF-7). The ionic nanodrugs exhibited an improved dark and light cytotoxicity than either the chemotherapeutic or photothermal parent compounds individually, due to a synergistic effect of the combined therapies and nanoparticle formation

    Characterization and Electrocatalytic Performance of Molasses Derived Co-Doped (P, N) and Tri-Doped (Si, P, N) Carbon for the ORR

    No full text
    There is a growing need to develop sustainable electrocatalysts to facilitate the reduction of molecular oxygen that occurs at the cathode in fuel cells, due to the excessive cost and limited availability of precious metal-based catalysts. This study reports the synthesis and characterization of phosphorus and nitrogen co-doped carbon (PNDC) and silicon, phosphorus, and nitrogen tri-doped carbon (SiPNDC) electrocatalysts derived from molasses. This robust microwave-assisted synthesis approach is used to develop a low cost and environmentally friendly carbon with high surface area for application in fuel cells. Co-doped PNDC as well as tri-doped SiPNDC showed Brunauer–Emmet–Teller (BET) surface areas of 437 and 426 m2 g−1, respectively, with well-developed porosity. However, examination of X-ray photoelectron spectroscopy (XPS) data revealed significant alteration in the doping elemental composition among both samples. The results obtained using rotating disk electrode (RDE) measurements show that tri-doped SiPNDC achieves much closer to a 4-electron process than co-doped PNDC. Detailed analysis of experimental results acquired from rotating ring disk electrode (RRDE) studies indicates that there is a negligible amount of peroxide formation during ORR, further confirming the direct-electron transfer pathway results obtained from RDE. Furthermore, SiPNDC shows stable oxygen reduction reaction (ORR) performance over 2500 cycles, making this material a promising electrocatalyst for fuel cell applications

    Effect of KOH on the Energy Storage Performance of Molasses-Based Phosphorus and Nitrogen Co-Doped Carbon

    No full text
    In this study, we have evaluated the effect of potassium hydroxide (KOH) on the energy storage performance of metal-free carbon-based materials prepared from molasses. Molasses are a renewable-resource biomass and economical by-product of sugar refinement, used here as a carbon precursor. Two co-doped carbon materials using molasses were synthesized via a time and cost-efficient microwave carbonization process, with ammonium polyphosphate as a phosphorus and nitrogen doping agent. The phosphorus and nitrogen co-doped carbon (PNDC) samples were prepared in the presence and absence of a chemical activating agent (KOH), to study the role of chemical activation on PNDCs. Physical characterizations were performed to gain insight into the composition, pore size and topographical data of each material. Electrochemical characterization via cyclic voltammetry in 1 M sulfuric acid (H2SO4) as well as in 6 M KOH as electrolytes, revealed high current density and specific capacitance for the chemically activated material (PNDC2) compared to one without chemical activation (PNDC1). The capacitance value of 244 F/g in KOH electrolyte was obtained with PNDC2. It is concluded that addition of KOH prior to carbonization increases the surface functionality, which significantly enhances the electrochemical properties of the PNDC material such as current density, stability, and specific capacitance

    Understanding of Förster Resonance Energy Transfer (FRET) in Ionic Materials

    No full text
    Herein, an ionic material (IM) with Förster Resonance Energy Transfer (FRET) characteristics is reported for the first time. The IM is designed by pairing a Nile Blue A cation (NBA+) with an anionic near-infrared (NIR) dye, IR820−, using a facile ion exchange reaction. These two dyes absorb at different wavelength regions. In addition, NBA+ fluorescence emission spectrum overlaps with IR820− absorption spectrum, which is one requirement for the occurrence of the FRET phenomenon. Therefore, the photophysical properties of the IM were studied in detail to investigate the FRET mechanism in IM for potential dye sensitized solar cell (DSSCs) application. Detailed examination of photophysical properties of parent compounds, a mixture of the parent compounds, and the IM revealed that the IM exhibits FRET characteristics, but not the mixture of two dyes. The presence of spectator counterion in the mixture hindered the FRET mechanism while in the IM, both dyes are in close proximity as an ion pair, thus exhibiting FRET. All FRET parameters such as spectral overlap integral, Förster distance, and FRET energy confirm the FRET characteristics of the IM. This article presents a simple synthesis of a compound with FRET properties which can be further used for a variety of applications

    Molecular (Raman, NIR, and FTIR) spectroscopy and multivariate analysis in consumable products analysis\u3csup\u3e1\u3c/sup\u3e

    No full text
    © 2019 Taylor & Francis Group, LLC. Ensuring the integrity of quality control and assurance of consumable products across consumer goods distribution and supply chains is pertinent to ensure consumer products of high quality to guarantee public health. Several analytical strategies, and technological innovations have been developed over the years for the quality control and assurance of consumable products. However, the simplicity and the noninvasive and nondestructive properties of Raman, near-infrared (NIR), and Fourier-transform infrared (FTIR) spectrometers, coupled with the low-cost and portability make these instrumental techniques excellent tools of choice for quality control and assurance of consumable products. This review article examines recent technological innovations and advances in Raman, NIR and FTIR spectroscopic instrument development and multivariate analyses used in consumer product analysis. New innovations in Raman, NIR, and FTIR spectroscopies as applied to analytical method development for purity analysis, quality control and assurance of consumable food products between January 2015 and December 2018 are discussed. Applications of data processing strategies and multivariate analyses of spectral data for instrumental and sample calibration, chemical analysis, and pattern recognition of consumable products are presented. The review also provides insight into the future trajectory of innovative technological developments in molecular spectroscopy, and multivariate analyses pertaining to general applications for consumer product analysis

    QCM Sensor Arrays, Electroanalytical Techniques and NIR Spectroscopy Coupled to Multivariate Analysis for Quality Assessment of Food Products, Raw Materials, Ingredients and Foodborne Pathogen Detection: Challenges and Breakthroughs

    No full text
    Quality checks, assessments, and the assurance of food products, raw materials, and food ingredients is critically important to ensure the safeguard of foods of high quality for safety and public health. Nevertheless, quality checks, assessments, and the assurance of food products along distribution and supply chains is impacted by various challenges. For instance, the development of portable, sensitive, low-cost, and robust instrumentation that is capable of real-time, accurate, and sensitive analysis, quality checks, assessments, and the assurance of food products in the field and/or in the production line in a food manufacturing industry is a major technological and analytical challenge. Other significant challenges include analytical method development, method validation strategies, and the non-availability of reference materials and/or standards for emerging food contaminants. The simplicity, portability, non-invasive, non-destructive properties, and low-cost of NIR spectrometers, make them appealing and desirable instruments of choice for rapid quality checks, assessments and assurances of food products, raw materials, and ingredients. This review article surveys literature and examines current challenges and breakthroughs in quality checks and the assessment of a variety of food products, raw materials, and ingredients. Specifically, recent technological innovations and notable advances in quartz crystal microbalances (QCM), electroanalytical techniques, and near infrared (NIR) spectroscopic instrument development in the quality assessment of selected food products, and the analysis of food raw materials and ingredients for foodborne pathogen detection between January 2019 and July 2020 are highlighted. In addition, chemometric approaches and multivariate analyses of spectral data for NIR instrumental calibration and sample analyses for quality assessments and assurances of selected food products and electrochemical methods for foodborne pathogen detection are discussed. Moreover, this review provides insight into the future trajectory of innovative technological developments in QCM, electroanalytical techniques, NIR spectroscopy, and multivariate analyses relating to general applications for the quality assessment of food products

    Qcm sensor arrays, electroanalytical techniques and nir spectroscopy coupled to multivariate analysis for quality assessment of food products, raw materials, ingredients and foodborne pathogen detection: Challenges and breakthroughs\u3csup\u3e†\u3c/sup\u3e

    No full text
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Quality checks, assessments, and the assurance of food products, raw materials, and food ingredients is critically important to ensure the safeguard of foods of high quality for safety and public health. Nevertheless, quality checks, assessments, and the assurance of food products along distribution and supply chains is impacted by various challenges. For instance, the development of portable, sensitive, low-cost, and robust instrumentation that is capable of real-time, accurate, and sensitive analysis, quality checks, assessments, and the assurance of food products in the field and/or in the production line in a food manufacturing industry is a major technological and analytical challenge. Other significant challenges include analytical method development, method validation strategies, and the non-availability of reference materials and/or standards for emerging food contaminants. The simplicity, portability, non-invasive, non-destructive properties, and low-cost of NIR spectrometers, make them appealing and desirable instruments of choice for rapid quality checks, assessments and assurances of food products, raw materials, and ingredients. This review article surveys literature and examines current challenges and breakthroughs in quality checks and the assessment of a variety of food products, raw materials, and ingredients. Specifically, recent technological innovations and notable advances in quartz crystal microbalances (QCM), electroanalytical techniques, and near infrared (NIR) spectroscopic instrument development in the quality assessment of selected food products, and the analysis of food raw materials and ingredients for foodborne pathogen detection between January 2019 and July 2020 are highlighted. In addition, chemometric approaches and multivariate analyses of spectral data for NIR instrumental calibration and sample analyses for quality assessments and assurances of selected food products and electrochemical methods for foodborne pathogen detection are discussed. Moreover, this review provides insight into the future trajectory of innovative technological developments in QCM, electroanalytical techniques, NIR spectroscopy, and multivariate analyses relating to general applications for the quality assessment of food products
    corecore