59 research outputs found

    Support theorem on R^n and non compact symmetric spaces

    Get PDF
    We consider convolution equations of the type f * T = g where f, g are in L^p(R^n) and T is a compactly supported distribution. Under natural assumptions on the zero set of the Fourier transform of T we show that f is compactly supported, provided g is. Similar results are proved for non compact symmetric spaces as well

    Microscopic force for aerosol transport

    Get PDF
    A key ingredient for single particle diffractive imaging experiments is the successful and efficient delivery of sample. Current sample-delivery methods are based on aerosol injectors in which the samples are driven by fluid-dynamic forces. These are typically simulated using Stokes' drag forces and for micrometer-size or smaller particles, the Cunningham correction factor is applied. This is not only unsatisfactory, but even using a temperature dependent formulation it fails at cryogenic temperatures. Here we propose the use of a direct computation of the force, based on Epstein's formulation, that allows for high relative velocities of the particles to the gas and also for internal particle temperatures that differ from the gas temperature. The new force reproduces Stokes' drag force for conditions known to be well described by Stokes' drag. Furthermore, it shows excellent agreement to experiments at 4 K, confirming the improved descriptive power of simulations over a wide temperature range

    Microscopic force for aerosol transport

    Get PDF
    A key ingredient for single particle diffractive imaging experiments is the successful and efficient delivery of sample. Current sample-delivery methods are based on aerosol injectors in which the samples are driven by fluid-dynamic forces. These are typically simulated using Stokes' drag forces and for micrometer-size or smaller particles, the Cunningham correction factor is applied. This is not only unsatisfactory, but even using a temperature dependent formulation it fails at cryogenic temperatures. Here we propose the use of a direct computation of the force, based on Epstein's formulation, that allows for high relative velocities of the particles to the gas and also for internal particle temperatures that differ from the gas temperature. The new force reproduces Stokes' drag force for conditions known to be well described by Stokes' drag. Furthermore, it shows excellent agreement to experiments at 4 K, confirming the improved descriptive power of simulations over a wide temperature range

    Laser-induced alignment of nanoparticles and macromolecules for single-particle-imaging applications

    Full text link
    Laser-induced alignment of particles and molecules was long envisioned to support three-dimensional structure determination using single-particle imaging with x-ray free-electron lasers [PRL 92, 198102 (2004)]. However, geometric alignment of isolated macromolecules has not yet been demonstrated. Using molecular modeling, we analyzed and demonstrated how the alignment of large nanorods and proteins is possible with standard laser technology, and performed a comprehensive analysis on the dependence of the degree of alignment on molecular properties and experimental details. Calculations of the polarizability anisotropy of about 150,000 proteins yielded a skew-normal distribution with a location of 1.2, which reveals that most of these proteins can be aligned using appropriate, realistic experimental parameters. Moreover, we explored the dependence of the degree of alignment on experimental parameters such as particle temperature and laser-pulse energy

    Haitian Variant Vibrio cholerae O1 Strains Manifest Higher Virulence in Animal Models

    Get PDF
    Vibrio cholerae causes fatal diarrheal disease cholera in humans due to consumption of contaminated water and food. To instigate the disease, the bacterium must evade the host intestinal innate immune system; penetrate the mucus layer of the small intestine, adhere and multiply on the surface of microvilli and produce toxin(s) through the action of virulence associated genes. V. cholerae O1 that has caused a major cholera outbreak in Haiti contained several unique genetic signatures. These novel traits are used to differentiate them from the canonical El Tor strains. Several studies reported the spread of these Haitian variant strains in different parts of the world including Asia and Africa, but there is a paucity of information on the clinical consequence of these genetic changes. To understand the impact of these changes, we undertook a study involving mice and rabbit models to evaluate the pathogenesis. The colonization ability of Haitian variant strain in comparison to canonical El Tor strain was found to be significantly more in both suckling mice and rabbit model. Adult mice also displayed the same results. Besides that, infection patterns of Haitian variant strains showed a completely different picture. Increased mucosal damaging, colonization, and inflammatory changes were observed through hematoxylin-eosin staining and transmission electron microscopy. Fluid accumulation ability was also significantly higher in rabbit model. Our study indicated that these virulence features of the Haitian variant strain may have some association with the severe clinical outcome of the cholera patients in different parts of the world

    Rapid sample delivery for megahertz serial crystallography at X-ray FELs

    Get PDF
    Liquid microjets are a common means of delivering protein crystals to the focus of X-ray free-electron lasers (FELs) for serial femtosecond crystallography measurements. The high X-ray intensity in the focus initiates an explosion of the microjet and sample. With the advent of X-ray FELs with megahertz rates, the typical velocities of these jets must be increased significantly in order to replenish the damaged material in time for the subsequent measurement with the next X-ray pulse. This work reports the results of a megahertz serial diffraction experiment at the FLASH FEL facility using 4.3 nm radiation. The operation of gas-dynamic nozzles that produce liquid microjets with velocities greater than 80 m s-1 was demonstrated. Furthermore, this article provides optical images of X-ray-induced explosions together with Bragg diffraction from protein microcrystals exposed to trains of X-ray pulses repeating at rates of up to 4.5 MHz. The results indicate the feasibility for megahertz serial crystallography measurements with hard X-rays and give guidance for the design of such experiments
    corecore