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A key ingredient for single particle diffractive imaging experiments is the successful and efficient
delivery of sample. Current sample-delivery methods are based on aerosol injectors in which the
samples are driven by fluid-dynamic forces. These are typically simulated using Stokes’ drag forces
and for micrometer-size or smaller particles, the Cunningham correction factor is applied. This is
not only unsatisfactory, but even using a temperature dependent formulation it fails at cryogenic
temperatures. Here we propose the use of a direct computation of the force, based on Epstein’s
formulation, that allows for high relative velocities of the particles to the gas and also for internal
particle temperatures that differ from the gas temperature. The new force reproduces Stokes’ drag
force for conditions known to be well described by Stokes’ drag. Furthermore, it shows excellent
agreement to experiments at 4 K, confirming the improved descriptive power of simulations over a
wide temperature range.

I. INTRODUCTION

The functionality of molecules and materials is
strongly correlated to their atomic structure. Currently,
biomolecules with sizes of a few nanometers are of partic-
ular interest for visualizing their high-resolution atomic
structure in order to unravel the secrets of life and for
developing, e. g., pharmaceuticals or novel biomimetic
materials. With the advent of modern x-ray free-electron
lasers (XFELs) coherent-single-particle diffractive imag-
ing (SPI) has become feasible [1–5]. SPI allows to retrieve
the three-dimensional (3D) atomic structure of nanoparti-
cles by processing a series of two dimensional diffraction
patterns of the corresponding isolated nanoparticles in
silico.

SPI does not rely on highly-ordered crystalline sample,
as in x-ray crystallography [6], nor on a mechanical sam-
ple support as in cryo-electron microscopy (CEM) [7, 8].
However, its diffraction-before-destruction approach [1]
requires constant replenishment of identical targets in
order to collect the necessary number of diffraction pat-
terns for the 3D reconstruction. Sample sources are typi-
cally aerosol injectors producing tightly focused streams
of nanoparticles [2]. However, the efficient delivery of
identical nanoparticles is still a bottleneck for SPI experi-
ments [9]. Our recently reported approach of using a cryo-
genic buffer-gas cooled aerosol injector [10] promises to
overcome this limitation by increasing the reproducibility
and control over the sample. There aerosolized nanoparti-
cles were transported into a cryogenically-cooled helium-
filled buffer-gas cell, where the nanoparticles were rapidly
cooled [10]. The low temperature reduces particle losses

∗ Email: jochen.kuepper@cfel.de; website: https://www.controlled-
molecule-imaging.org

and broadening of the stream due to diffusion, and it
allows for better subsequent nanoparticle control [11–13].
Generally, for best performance it is necessary to op-

timize the geometry of an aerosol injectors and the flow
conditions of the carrier gas for every individual nanopar-
ticle sample. For SPI experiments at room temperature
simulations have already shown to be a useful tool to
get insights on the sample delivery process and to aid
during optimization [14]. However, for the cryogenic
buffer-gas cell an improved description of the interaction
between the gas and the nanoparticles is required for a
better understanding of the particles’ trajectories and
phase-space distributions. These simulations should also
reliably predict the final temperature of the nanoparticles
and their cooling rate, an important aspect of buffer-gas
cooling [10].

A general theory for describing the forces of an aerosol
in a gas flow has yet to be found. For the purpose of
modelling particle trajectories through aerodynamic focus-
ing devices it is important to consider the usual working
conditions that apply during the experiment. The pres-
sure regimes can be described by the Knudsen number
Kn = λ/dP, which is the ratio of the mean free path of
the fluid λ to the diameter of the particle dP. In the
experiment the pressure ranges, in principle, from atmo-
sphere to ultrahigh vacuum. However, the actual focusing
and transport that we are mainly interested in occurs in
pressure regimes below 10 mbar, leading to Kn ≥ 100
for nanometer size particles. The regime with Kn � 1 is
called molecular flow. For this regime the boundary condi-
tions assumed for Stokes famous drag equation do not hold
any more and an empirical correction factor to the drag
force, called “Cunningham correction factor”, was intro-
duced [15] and quickly improved to today’s formalism [16].
The empirical parameters were determined several times
by fitting the drag force to experimental data, mostly
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from Milikan’s oil droplet experiments [17, 18]. Hence,
this original description of the drag force is valid for the
exact conditions in Milikan’s experiment, namely, air at
room temperature and particles of hundreds nanometers
or larger. The Cunningham correction factor depends
on the gas and temperature [19] and the temperature-
dependent correction factors were derived from kinetic
theory considerations and related to experimental data
for temperatures from 200 to 1000 K [20]. However, we
are now trying to describe experiments in helium gas at
temperatures down to 4 K [10].

Another approach to model the force of a rarefied fluid
on a particle is to use the kinetic theory of gases. For
the momentum transfer from gas molecules impinging
and emerging from the surface of a particle, Epstein was
able to reproduce the experimental data measured by
Milikan by assuming 10 % specular reflection and 90 %
diffuse reflection and the particle to be a perfect con-
ductor [21]. This approach is valid across all gas types
and temperatures. For particle sizes of current interest,
which are in the order of 10–300 nm, the assumptions of a
rigid body and the mainly diffuse scattering of Epstein’s
model are still good approximations. For smaller systems
more advanced treatment might be necessary: For par-
ticles with sizes of a few nm specular reflection become
dominant and for small molecular sizes the treatment as
rigid spheres fails and long range interactions, e. g., van
der Waals interactions and electric multipole interactions,
have to be taken into account [19].

The dimensions of the current aerodynamic focusing
devices are on the order of millimeter to centimeter. When
miniaturizing these devices it might become necessary to
include forces important for microfluidic channels such as
the Saffman force [22].

Epstein’s description would match the experimental
conditions [10, 14] if it wasn’t for the large relative veloci-
ties between particles and gas and the temperature differ-
ences between gas and particles. These effects are incom-
patible with Epstein’s approach, although we note that
Epstein’s model was improved in several ways, e. g., to the
description of molecular-size particles based on Chapman-
Enskog theory and the kinetic theory of gases [19, 23],
by accounting for quantum effects [24], by deriving an
analytical expression for the ratio between specular and
diffuse reflection [25], through molecular dynamics simula-
tions [26–28], or for non-isothermal fluids [29, 30] and lift
forces due to the rotation of the particle or the velocity
gradient in the flow field [22, 31, 32]. Unfortunately, none
of these advances treats the needed adaptation for our
experimental conditions. Hence, a new model based on
Epstein’s original approach is formulated.

II. MODELING THE PARTICLE TRANSPORT
IN AN AEROSOL INJECTOR FOR SPI

EXPERIMENTS

A. Drag force in an aerosol injector for SPI
experiments

For molecular flow the mean free path of the gas is much
larger than the diameter of the particle. Hence, it is a
valid assumption that the presence of the particle does not
change the gas flow, e. g., the velocity distribution of the
gas molecules. Assuming a Maxwell distribution, the num-
ber of gas molecules with velocities between (vx, vy, vz)
and (vx + dvx, vy + dvy, vz + dvz) is

Nvx,vy,vz dvx dvy dvz

= N

(
h

π

) 3
2

e−h(v
2
x+v

2
y+v

2
z) dvx dvy dvz, (1)

with

h =
m

2kT
, (2)

where N is the Number of molecules per unit Volume,
m is the mass of the gas molecule, k is the Boltzmann
constant and T is the gas temperature. From the point
of view of a particle moving in a gas with speed U and
velocity components Ux = αU , Uy = βU and Uz = γU ,
with velocities along the x, y, x axes according to the
fractions of speed α, β, γ, the velocity distribution is

Nvx,vy,vz dvx dvy dvz =

N

(
h

π

) 3
2

e−h((vx+αU)2+(vy+βU)2+(vz+γU)2) dvx dvy dvz.

(3)

To determine the amount of gas molecules that hit the
particle we assumed a surface element dS of the particle
normal to the x direction. The volume that contains all
particles with velocity vx + dvx that will hit the surface
in unit time is given by vxdS and the amount of particles
in this volume is

nvx,vy,vz dvx dvy dvz dS = vxNvx,vy,vz dvx dvy dvz dS.
(4)

The amount of momentum transferred to the particle in
a given direction by an individual gas molecule impinging
and sticking to the particle is given by m(α′vx + β′vy +
γ′vz). For a sphere with radius R, the z-axis defined to be
normal to the plane through x and U , and the angle θ be-
tween y and U we obtain α = cos (θ) , β = sin (θ) , γ = 0.
Furthermore, for the momentum transferred in the direc-
tion of U we obtain α′ = cos (θ) , β′ = sin (θ) , γ = 0. The
total amount of momentum transferred in the direction of
U can be calculated analog to Epstein’s model, directly
using (3) instead of an approximation for small U , by inte-
grating over all surface elements dS = R2 sin(θ)dθdφ and
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all gas molecules impinging the particle in unit time. The
amount of gas molecules impinging the particle per time
is constant in the statistical limit, so is the momentum
transferred per time, the force. It is given by

Fimp =
p
√
πR2

2hU2

(
−2e−hU

2√
hU
(

1 + 2hU2
)

+
√
π
(

1− 4hU2 − 4h2U4
)

erf
(√

hU
))

.

(5)

For specular reflection the x component of the velocity
U of all gas molecules is changing sign, as does α, while
everything else stays the same. Performing the integration,
the momentum transferred by the reflecting gas molecules,
and so the force due to reflection Fr, averages to zero and
the total force in case of specular reflection Fspec is

Fspec = Fimp + Fr = Fimp. (6)

Calculating the force for diffuse scattering Fdiff requires
to appropriately take the temperature difference between
the gas and the particle into account. Assuming the gas
molecule to thermalize to the particle’s temperature dur-
ing accommodation and it thus leaving the particle with a
Maxwell Boltzmann distribution according to the particles
temperature [21], it is possible to calculate the amount
of momentum transfer by considering the conservation of
the number of gas molecules:

nvx,vy,vz,imp dvx dvy dvz dS =

nvx,vy,vz,leav dvx dvy dvz dS
(7)

The left side of (7) is identical to (4) and

nvx,vy,vz,leav = Cleave
−h′(v2x+v

2
y+v

2
z). (8)

h′ is defined equivalent to (2), but using the temperature
of the particle instead of the gas temperature. Integrating
(7) over the whole surface and all velocities, Cleaving is
determined and thus the force on the particle:

Fdiff = Fimp −
2

3

h√
h′
p (π)

3
2 R2U (9)

The total force is assumed to be a combination of 10 %
specular reflections and 90 % diffuse reflections [21]:

Ftotal = 0.1Fspec + 0.9Fdiff (10)

B. Temperature changes of the aerosol

The drag force (9) on a particle depends on its tempera-
ture. In the process of diffuse scattering the gas molecules
are assumed to thermalize to the particle’s temperature.
This means, that that the velocity distribution of the
impinging gas molecules differs from the the velocity dis-
tribution of the reflected ones not only due to U , but also
due to different temperatures. Depending on whether

the particle’s temperature is higher or lower than the gas
temperature, the gas molecules take away energy from or
deposit energy in the particle, respectively, in addition
to the energy deposited in kinetic energy of the particle
due to U . We assume this additional energy change will
exclusively lead to a change in particle temperature, be-
cause it is even present with U = 0. Integrating over all
molecules that hit the particle in unit time the change in
energy is

∆E =
p
√
πR2

4hh′

(
−2e−hU

2√
h

(
5h′ + 2h

(
2 + h′U2

))

−

√
π erf

(√
hU
)

U

(
3h′ + 4h2U2

(
2 + h′U2

)
+4h

(
1 + 3h′U2

)))
(11)

which for small values of U , using the same velocity ap-
proximation as in Epstein’s model, simplifies to

∆E =
4p
√
hπR2

h′
− 4p

√
πR2

√
h

(12)

A change of the particle’s temperature is considered as
a change ∆E of the total energy stored in all its degrees
of freedom, i. e., its specific heat cp. Thus the change in
particle temperature per unit time is

∆T =
∆E

cpmp
, (13)

with the particle’s mass mp.

C. Brownian Motion

So far we calculated the force by averaging over all sin-
gle collisions the particle undergoes per unit time, which
appropriately predicts the mean force on the particle.
However, its actual trajectory depends further on its
Brownian motion. For a numerical description of the
Brownian motion using the Langevin equation [33] the
force on the particle is split into a part Fdrag that is pro-
portional to U and a part Fb that is a random force. Fdrag
is in our case Equation 10, but using the same velocity
approximation as in Epstein’s model. Fb is assumed to
be white noise consisting of an amplitude A and a ran-
dom number r with zero mean and unit variance. The
fluctuation-dissipation theorem defines the amplitude of
the random force to be

A =
〈
Fb(t1)Fb(t2)

〉
= 2kTµδ(t1 − t2), (14)

with µ = Fdrag/U . Fb considers the particle at rest with
the gas and µ is calculated for the case of small U , where
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FIG. 1. Calculated drag force (10) in comparison to Stokes’ drag force as a function of (a, d) pressure, (b, e) velocity difference,
and (c, f) particle diameter at (a–c) room temperature and (d–f) 4 K. Stokes’ drag force was calculated as described by Roth
et al. [14] for room temperature and as described by Samanta et al. [10] for 4 K. While one of the parameters is varied the
others are fixed at 1 mbar, 1 m/s, and 300 nm, respectively. The dashed gray line in (d) indicates the pressure where Kn = 40;
see text for further details.

Ftotal is proportional to U . With a numerical represen-
tation of the delta function with a time step size ∆t the
Brownian force is

Fb = r

√√√√√
(

16
3 + 2

3π
√

h
h′

)√
π
hpmR

2

∆t
. (15)

III. BENCHMARKING THE NEW FORCE

A. Comparison to Stokes’ drag force

In order to validate the new force, i. e., the model
derived above, we compare it to the established model
of Stokes’ drag force, which is known to produce reliable
results for specific conditions, vide supra. Fig. 1 shows
the calculated values of the new proposed drag force
compared to Stokes’ drag force in dependence of the gas
pressure, the velocity difference between particle and gas,
and the particle diameter for room temperature and 4 K,
respectively.

For room temperature, Fig. 1 a–c, and in a regime com-
parable to that in the Millikan experiment both models
lead to nearly identical results. When the velocity differ-
ences becomes larger than 200 m/s the models diverge,
which is expected as Stokes’ drag force is only applicable
for comparable slow flows [34], whereas (10) appropri-
ately describes that not only the amount of momentum
transferred per gas molecule depends on U , but also the
amount of gas molecules that hit the particle increases
significantly when U approaches values comparable to the
average speed of a single gas molecule.

For a cold gas at 4 K, Fig. 1 d–f, the functional behavior
of the models differ. Here, Stokes’ force [20] is calculated
as described by Samanta et al. [10]. For low pressures
(large Kn) both forces have a linear pressure dependency,
but with a flatter slope in case of (10). In general the
results from (10) are below the calculated forces using
Stokes in this region. However, for high pressures (small
Kn) Stokes’ force approaches a constant value. The tran-
sition occurs around 1 mbar (Kn ≈ 40). It is important
to note that the region on the left to that transition
(Kn >> 1) is the region where the assumption for (10),
that the presence of the particle is not influencing the gas
flow, holds. Smaller predicted magnitudes of the force
using (10) can be observed in Fig. 1 e,f as well. These
lower values are in accordance with our previous expe-
rience using Stokes’ force at these conditions: In order
to successfully describe the available experimental data
using Stokes’ force, it was necessary to scale the force
down by roughly a factor of 4 [10].

B. Comparison to Newton’s law of cooling

We validated the cooling rates (13), using (11), of our
model against Newton’s law of cooling [10]. The resulting
cooling rates are shown in Fig. 2. Newton’s law of cool-
ing and our model show the same qualitative behaviour.
As expected they both linearly depend on the tempera-
ture difference between the particle and the gas. Also
the dependencies of pressure and particle diameter are
very similar. In general, our new model leads to overall
somewhat higher cooling rates, with the largest deviations
roughly within a factor of two of Newton’s law of cooling.
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The calculations of cooling rates using Newton’s law of
cooling involve several empirical approximations in the
calculation of the Nusselt number and the heat transfer
coefficients for forced convection [10]. In addition, an-
other empirical parameter is needed to correct for the
rarefied gas regime. The only empirical value in the new
model (13) is the specific heat of the particle. Thus, it
comes by no surprise, the two models do not produce
identical quantitative results and the agreement we can
see in Fig. 2 a–c is pretty good, with (13) being a much
clearer, hence more trustworthy, model.
Fig. 3 shows calculated cooling rates using the full

model (11) and the approximation for small velocities
(12) for the change in energy. Up to relative velocities
of 100 m/s the calculated cooling rate does not strongly
depend on velocity and the approximation of small ve-
locities is applicable. Hence, depending on the system of
interest, it is a valid approach to use this assumption for
the sake of computational speed.
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calculated with (blue) the full model (13) and (black) the
approximation for small velocity differences between particle
and gas.

C. Comparison to experimental Results

We compared our model against recent experimental
and computational results for the focusing of polystyrene
spheres of diameter 220 nm in a helium buffer gas cell
at 4 K [10]. Fig. 4 shows the full width at half maxi-
mum (FWHM) of the particle beams 10 mm behind the
outlet of a cryogenic buffer-gas cell as a function of the
helium flow rate, i. e., differing pressures and velocities.

As expected, Stokes’ drag force, even with a temper-
ature dependent slip correction, does not reproduce the
experimental results at all, because it overestimates the
force (vide supra). Only by scaling it down by a factor of
4 as in Fig. 4 of [10] comparable results can be achieved.

The microscopic drag force (10) derived here repro-
duces these experimental result very well, validating our
simulation framework.
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FIG. 4. The full width at half maximum (FWHM) of the par-
ticle beam transverse position 1 cm after the buffer gas cell for
different helium mass flows, simulated using the temperature-
dependent Stokes’ drag force [20], simulated using (10), and
experimentally measured.
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IV. CONCLUSION

We have developed a new description of the flow of
nanoparticles through a fluid, or the flow of a fluid past
an object, which works over a large range of pressures,
relative velocities, particle sizes, and temperatures. The
model follows the ideas of Epstein’s formulation of the
drag force and does not require additional empirical ad-
justments of the force. We have verified the model against
Stokes’ drag force in the regime where the latter is valid
and against experimental results for nanoparticles at cryo-
genic temperatures. Our new description works very well
over this wide range of conditions.

The accurate descriptions enabled by our model are
an important ingredient, for instance, for optimized sam-
ple injection in single-particle diffraction experiments:
Hit rates can be significantly improved through reliable
predictions of injection parameters before the actual mea-
surement campaign at the large-scale facility. This does
not only improve data quality, but allows to make much
better use of the expensive x-ray pulses and thus enables
better science.

As another benefit, the new model directly provides the
particles’ temperatures and thus the cooling rate in the
gas, which is important, for instance, for the shockfreezing
of biological samples.

However, while our model is a good description for the
conditions in current SPI experiments, the envisioned ad-
vances to single-molecule samples, i. e., proteins or other
macromolecules with sizes of a few nanometers, will ne-
cessitate an advanced description of the nanoparticle-gas
collisions, see the Introduction.

The model is implemented in our larger CMInject soft-
ware package for the simulation of generic aerosol injectors,
which we currently prepare for publication.
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