137 research outputs found

    Selective occupancy of methane by cage symmetry in TBAB ionic clathrate hydrate.

    Get PDF
    Methane trapped in the two distinct dodecahedral cages of the ionic clathrate hydrate of TBAB was studied by single crystal XRD and MD simulation

    Thermal Performance Evaluation of TIM Combined with Residential Windows in Different Climatic Regions in Iran

    Get PDF
    Windows play a significant role in the increase and loss of heat from the building envelope and determine the quantity, quality, and distribution of daylight. A strategy that involves incorporating transparent insulating materials into a double-glazed window offers the potential to provide combined improvements in thermal and daylighting performance. The thermal properties of transparent insulation materials in windows depend on various factors, such as the type of insulation material, thickness, geometry and insulation structure, location, and orientation of the window, among others. The aim of this research is to optimize three criteria: "thickness," "location of transparent insulation relative to window layers," and "direction of the wall with transparent insulation of the building window." The goal is to minimize thermal loads and reduce energy consumption in residential buildings. To achieve this, a real model was selected, and Design Builder software was used to measure the "heating load," "cooling load," and the sum of these two loads as the "total thermal load" for all three criteria in three cities of Iran with different climates: Tehran (moderate climate), Ahvaz (warm climate), and Tabriz (cold climate). The results of the research showed that for the city of Tehran, 3-inch insulation in the middle of the double-glazed window and the south front is optimal. For the city of Tabriz, 5-inch insulation on the inner surface of the window and the western front is optimal. And for the city of Ahvaz, 3-inch insulation on the outer surface of the window and the eastern front is optimal. It is worth noting that the annual heating load and total annual heating load for all three criteria have the highest values in Tabriz city. Therefore, it is recommended to use HSNPS insulation in transparent windows to reduce energy consumption in Tabriz (cold climate)

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Simple Ethers as Models of Sugar Molecules in Calculations of Vertical Excitation Energies of DNA and RNA Nucleosides

    No full text
    The ribose and deoxyribose molecules of RNA and DNA nucleosides are substituted with simple model compounds 1-methoxy-2-ethanol and 1-methoxypropane to mimic the effect of binding to sugars on the vertical excitation energies of purine and pyrimidine bases. The (R)-1-methoxy-2-ethanol, CH3OC*HCH2OH, for model ribose nucleosides and (R)-1-methoxypropane, CH3OC*HC2H5, for model deoxyribose nucleosides have minimal structural characteristics of ribose and deoxyribose molecules when attached to nucleic acid purine and pyrimidine bases. The bases are attached to the C1 carbon atom designated by the asterisk. The vertical excitation energies of these model nucleosides are calculated with the time-dependent density functional theory method at the B3LYP level with 6-311++G(d,p) and aug-cc-pVDZ basis sets. The attachment of the ether molecules qualitatively and quantitatively modifies the excited state energy levels of the model nucleosides when compared to the free bases. These changes can affect the deexcitation mechanisms for photoexcited nucleosides.Peer reviewed: YesNRC publication: Ye

    Application of the linear isotherm regularity to selected fluid systems

    No full text
    Dense hard-sphere and Lennard-Jones fluids and also liquid mercury and water are studied to see if they obey the linear isotherm regularity suggested by Parsafar and Mason. For dense hard-sphere fluids a behavior consistent with the regularity is observed. Data from simulations of the Lennard-Jones fluid were observed to follow the trends proposed by the regularity. For mercury, agreement between the experimental data and the predictions of the regularity is obtained. This suggests that the scope of the regularity can be extended to include liquid metals. In the case of water, for pressure ranges that are not too large. quantitative agreement with the predictions of the regularity can be obtained. Over larger ranges of pressure, systematic deviations appear, but the agreement is still satisfactory. Based on the model previously proposed for the regularity, a discussion of some aspects of the parameters in the equation is given.NRC publication: N

    Density corrections to transport coefficients from time correlation functions

    No full text
    A new method for deriving first order density corrections to transport coefficients using projection operators in the time correlation function formalism is developed. Low and moderately dense gas transport coefficients are standardly calculated from a form of the generalized Boltzmann equation. This equation being solved to first order density corrections for repulsive potentials at the binary collision level by Snider and Curtiss and later extended to include the effects associated with the static presence of a third particle on a binary collision by Hoffman and Curtiss. Rainwater and Friend added extra contributions for the presence of bound pairs when the molecules have an attractive potential. They utilized the Stogryn - Hirschfelder theory for the bound pairs and performed detailed numerical calculations of the resultant formulas. While the numerical calculations give good agreement with experiment, questions remain as to the nature and rigor of the assumptions made in obtaining the final formulas, especially the ad hoc addition of bound pair contributions to the density corrections of systems with repulsive potentials, and the extent that these approximations affect the final numerical results. To study these questions, the time correlation function formulas for the transport coefficients were chosen as an alternative route to determine first order density corrections. The time correlation formulas are formally exact and so the density corrections can be usefully compared to those of the generalized Boltzmann equation. Kawasaki and Oppenheim had previously derived formal expressions for first order density corrections to the shear viscosity for a gas of molecules with a repulsive potential, but their results had not been reduced to a form that could be directly compared to those of Snider and Curtiss. As a first step in the study of the time correlation function formalism, the density corrections of Kawasaki and Oppenheim are shown to be equivalent to those of Snider and Curtiss along with an additional correction for three-body collisions. The projection operator method developed in this thesis does not have the infinite series resummation procedure used by Kawasaki and Oppenheim and is an alternative route to obtaining density corrections from the time correlation functions. At low pressures, projection operators are defined which only consider kinetic contributions to the flux function and expressions for the lowest order transport coefficients along with their higher moment corrections are derived. These expressions are consistent with the solution of the Boltzmann equation. The first order density correction from bound pairs on the transport coefficients are approximated by treating the system as a binary gas mixture consisting of free molecules and bound pairs. The results of viewing the system from the molecular picture and the atomic picture with appropriate projection operators are shown to be consistent with one another and also with the Boltzmann equation for binary mixtures. Density corrections in moderately dense gases also arise from potential contributions to the flux. Projection operators which account for both the kinetic and potential flux contributions are required in order to derive explicit expressions for the first order density corrections to the viscosity and thermal conductivity. It is observed that these corrections are consistent with those of Snider and Curtiss with the added Hoffman and Curtiss correction and a term which takes explicit account of three-particle collisions. In the treatment of mixtures and potential interaction effects, the calculation of a transport coefficient is reduced to an equivalent matrix inversion problem. The binary collision expansion of the respective resolvent in the matrix elements in these formulas allows the transport coefficient to be expressed in terms of integrals over functions of the intermolecular potential. The projection operator for each system is determined in a straightforward manner with reference to the particular flux tensor in the time correlation formula. Reduction of the general formula to relations suitable for numerical calculation involves the resolvent expansion onto the appropriate projected subspace, and the subsequent binary collision expansion to reduce the iV-particle resolvent to a tractable form.Science, Faculty ofChemistry, Department ofGraduat

    Zero-point energy effects on the stability of water clusters: Implications on the uptake of hydrogen isotope substituted water on ice and clathrate hydrate phases

    No full text
    To study the effect of hydrogen isotope substitution on the uptake of water during formation of clathrate hydrates, the harmonic intermolecular librational modes of selected water clusters (X2O)n with n = 2–6 and hydrogen isotopes X = H, D, and T are studied. The effects of the quantum mechanical zero-point energy (ZPE) in each cluster on the binding energies of the H2O, D2O, and T2O clusters are determined, with ZPE leading to the smallest binding energies in the H2O clusters and the largest binding energies in the T2O clusters. Corrections for anharmonicity of the librational modes are considered, and these bring the frequency ranges of the calculated intermolecular librational modes in the clusters to the experimental ranges of the librational modes in the infrared spectra of H2O and D2O solid ice and clathrate hydrate phases, and liquid H2O water. These calculations show the expected ranges of the binding energy of tritiated water onto a solid ice and clathrate hydrate surface and can help quantify the isotopic enrichment on a growing clathrate hydrate phase from the solution

    Non-equilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition

    No full text
    Nonequilibrium, constant energy, constant volume (NVE) molecular dynamics simulations are used to study the decomposition of methane clathrate hydrate in contact with water. Under adiabatic conditions, the rate of methane clathrate decomposition is affected by heat and mass transfer arising from the breakup of the clathrate hydrate framework and release of the methane gas at the solid-liquid interface and diffusion of methane through water.We observe that temperature gradients are established between the clathrate and solution phases as a result of the endothermic clathrate decomposition process and this factor must be considered when modeling the decomposition process. Additionally we observe that clathrate decomposition does not occur gradually with breakup of individual cages, but rather in a concerted fashion with rows of structure I cages parallel to the interface decomposing simultaneously. Due to the concerted breakup of layers of the hydrate, large amounts of methane gas are released near the surface which can form bubbles that will greatly affect the rate of mass transfer near the surface of the clathrate phase. The effects of these phenomena on the rate of methane hydrate decomposition are determined and implications on hydrate dissociation in natural methane hydrate reservoirs are discussed.Peer reviewed: YesNRC publication: Ye
    corecore