59 research outputs found

    A Roadmap for the Production of a GMP-Compatible Cell Bank of Allogeneic Bone Marrow-Derived Clonal Mesenchymal Stromal Cells for Cell Therapy Applications

    Get PDF
    Background: Allogeneic mesenchymal stromal cells (MSCs) have been used extensively in various clinical trials. Nevertheless, there are concerns about their efficacy, attributed mainly to the heterogeneity of the applied populations. Therefore, producing a consistent population of MSCs is crucial to improve their therapeutic efficacy. This study presents a good manufacturing practice (GMP)-compatible and cost-effective protocol for manufacturing, banking, and lot-release of a homogeneous population of human bone marrow-derived clonal MSCs (cMSCs). Methods: Here, cMSCs were isolated based on the subfractionation culturing method. Afterward, isolated clones that could reproduce up to passage three were stored as the seed stock. To select proliferative clones, we used an innovative, cost-effective screening strategy based on lengthy serial passaging. Finally, the selected clones re-cultured from the seed stock to establish the following four-tired cell banking system: initial, master, working, and end of product cell banks (ICB, MCB, WCB, and EoPCB). Results: Through a rigorous screening strategy, three clones were selected from a total of 21 clones that were stored during the clonal isolation process. The selected clones met the identity, quality, and safety assessments criteria. The validated clones were stored in the four-tiered cell bank system under GMP conditions, and certificates of analysis were provided for the three-individual ready-to-release batches. Finally, a stability study validated the EoPCB, release, and transport process of the frozen final products. Conclusion: Collectively, this study presents a technical and translational overview of a GMP-compatible cMSCs manufacturing technology that could lead to the development of similar products for potential therapeutic applications. Graphical Abstract: [Figure not available: see fulltext.

    Nonordered dendritic mesoporous silica nanoparticles as promising platforms for advanced methods of diagnosis and therapies

    Get PDF
    Dendritic mesoporous silica nanoparticles (DMSNs) are a new generation of porous materials that have gained great attention compared to other mesoporous silicas due to attractive properties, including straightforward synthesis methods, modular surface chemistry, high surface area, tunable pore size, chemical inertness, particle size distribution, excellent biocompatibility, biodegradability, and high pore volume compared with conventional mesoporous materials. The last years have witnessed a blooming growth of the extensive utilization of DMSNs as an efficient platform in a broad spectrum of biomedical and industrial applications, such as catalysis, energy harvesting, biosensing, drug/gene delivery, imaging, theranostics, and tissue engineering. DMSNs are considered great candidates for nanomedicine applications due to their ease of surface functionalization for targeted and controlled therapeutic delivery, high therapeutic loading capacity, minimizing adverse effects, and enhancing biocompatibility. In this review, we will extensively detail state-of-the-art studies on recent advances in synthesis methods, structure, properties, and applications of DMSNs in the biomedical field with an emphasis on the different delivery routes, cargos, and targeting approaches and a wide range of therapeutic, diagnostic, tissue engineering, vaccination applications and challenges and future implications of DMSNs as cuttingedge technology in medicine

    SADI, SHARE, and the in silico scientific method

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The emergence and uptake of Semantic Web technologies by the Life Sciences provides exciting opportunities for exploring novel ways to conduct <it>in silico</it> science. Web Service Workflows are already becoming first-class objects in “the new way”, and serve as explicit, shareable, referenceable representations of how an experiment was done. In turn, Semantic Web Service projects aim to facilitate workflow construction by biological domain-experts such that workflows can be edited, re-purposed, and re-published by non-informaticians. However the aspects of the scientific method relating to explicit discourse, disagreement, and hypothesis generation have remained relatively impervious to new technologies.</p> <p>Results</p> <p>Here we present SADI and SHARE - a novel Semantic Web Service framework, and a reference implementation of its client libraries. Together, SADI and SHARE allow the semi- or fully-automatic discovery and pipelining of Semantic Web Services in response to <it>ad hoc</it> user queries.</p> <p>Conclusions</p> <p>The semantic behaviours exhibited by SADI and SHARE extend the functionalities provided by Description Logic Reasoners such that novel assertions can be automatically added to a data-set without logical reasoning, but rather by analytical or annotative services. This behaviour might be applied to achieve the “semantification” of those aspects of the <it>in silico</it> scientific method that are not yet supported by Semantic Web technologies. We support this suggestion using an example in the clinical research space.</p

    Nonordered dendritic mesoporous silica nanoparticles as promising platforms for advanced methods of diagnosis and therapies

    Get PDF
    Dendritic mesoporous silica nanoparticles (DMSNs) are a new generation of porous materials that have gained great attention compared to other mesoporous silicas due to attractive properties, including straightforward synthesis methods, modular surface chemistry, high surface area, tunable pore size, chemical inertness, particle size distribution, excellent biocompatibility, biodegradability, and high pore volume compared with conventional mesoporous materials. The last years have witnessed a blooming growth of the extensive utilization of DMSNs as an efficient platform in a broad spectrum of biomedical and industrial applications, such as catalysis, energy harvesting, biosensing, drug/gene delivery, imaging, theranostics, and tissue engineering. DMSNs are considered great candidates for nanomedicine applications due to their ease of surface functionalization for targeted and controlled therapeutic delivery, high therapeutic loading capacity, minimizing adverse effects, and enhancing biocompatibility. In this review, we will extensively detail state-of-the-art studies on recent advances in synthesis methods, structure, properties, and applications of DMSNs in the biomedical field with an emphasis on the different delivery routes, cargos, and targeting approaches and a wide range of therapeutic, diagnostic, tissue engineering, vaccination applications and challenges and future implications of DMSNs as cutting-edge technology in medicine

    Evaluation of gait symmetry in poliomyelitis subjects : Comparison of a conventional knee ankle foot orthosis (KAFO) and a new powered KAFO.

    Get PDF
    Background: Compared to able-bodied subjects, subjects with post polio syndrome and poliomyelitis demonstrate a preference for weight-bearing on the non-paretic limb, causing gait asymmetry. Objectives: The purpose of this study was to evaluate the gait symmetry of the poliomyelitis subjects when ambulating with either a drop- locked knee ankle foot orthosis (KAFO) or a newly developed powered KAFO. Methods: Seven subjects with poliomyelitis who routinely wore conventional KAFOs participated in this study, and received training to enable them to ambulate with the powered KAFO on level ground, prior to gait analysis. Results: There were no significant differences in the gait symmetry index (SI) of step length (P=0.085), stance time (P=0.082), double limb support time (P=0.929) or speed of walking (p=0.325) between the two test conditions. However, using the new powered KAFO improved the SI in step width (P=0.037), swing time (P=0.014), stance phase percentage (P=0.008) and knee flexion during swing phase (p≤0.001) compared to wearing the dropped locked KAFO. Conclusion: The use of a powered KAFO for ambulation by poliomyelitis subjects affects gait symmetry in the base of support, swing time, stance phase percentage and knee flexion during swing phase

    The efficacy of surgical decompression before 24 hours versus 24 to 72 hours in patients with spinal cord injury from T1 to L1 – with specific consideration on ethics: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is no clear evidence that early decompression following spinal cord injury (SCI) improves neurologic outcome. Such information must be obtained from randomized controlled trials (RCTs). To date no large scale RCT has been performed evaluating the timing of surgical decompression in the setting of thoracolumbar spinal cord injury. A concern for many is the ethical dilemma that a delay in surgery may adversely effect neurologic recovery although this has never been conclusively proven. The purpose of this study is to compare the efficacy of early (before 24 hours) verse late (24–72 hours) surgical decompression in terms of neurological improvement in the setting of traumatic thoracolumbar spinal cord injury in a randomized format by independent, trained and blinded examiners.</p> <p>Methods</p> <p>In this prospective, randomized clinical trial, 328 selected spinal cord injury patients with traumatic thoracolumbar spinal cord injury are to be randomly assigned to: 1) early surgery (before 24 hours); or 2) late surgery (24–72 hours). A rapid response team and set up is prepared to assist the early treatment for the early decompressive group. Supportive care, i.e. pressure support, immobilization, will be provided on admission to the late decompression group. Patients will be followed for at least 12 months posttrauma.</p> <p>Discussion</p> <p>This study will hopefully assist in contributing to the question of the efficacy of the timing of surgery in traumatic thoracolumbar SCI.</p> <p>Trial Registration</p> <p><b>RCT registration number: ISRCTN61263382</b></p

    Effective parameters on conductivity of mineralized carbon nanofibers: an investigation using artificial neural networks

    Get PDF
    The aim of this study was to predict the effects of different parameters on the conductivity of mineralized PAN-based carbon nanofibers by the artificial neural network (ANN) method. The conductivity of CNFs was investigated as a function of various parameters, including simulated body fluid (SBF) concentration, immersion time and CNFs diameter. In order to conduct ANN modeling, the considered parameters and experimental outputs were categorized into (i) training, (ii) validating and (iii) testing datasets, which were subsequently analyzed using three different training algorithms, including scaled conjugate gradient, Bayesian regularization, and Levenberg-Marquardt back-propagation. The comparison study between three artificial neural network models indicates that all back-propagation methods could be employed to estimate the cathodic current accurately. The results of cyclic voltammetry demonstrated that the cathodic current increased as a function of decreasing simulated body fluid concentration, immersion time and carbon nanofiber diameter. The Pearson correlation coefficients were significant at less than the 0.01 level for all prediction models. Among the studied algorithms, the scaled conjugate gradient back-propagation method produced the highest R-value at 0.92. Based on the promising results of the current approach, the mineralized CNFs can be tailored in a way to construct electro-conductive scaffolds capable of manipulating the activities of bone cells through electrical stimulation and could be utilized in bone tissue engineering

    Gold nanoparticle-mediated bubbles in cancer nanotechnology

    No full text
    Microbubbles (MBs) have been extensively investigated in the field of biomedicine for the past few decades. Ultrasound and laser are the most frequently used sources of energy to produce MBs. Traditional acoustic methods induce MBs with poor localized areas of action. A high energy level is required to generate MBs through the focused continuous laser, which can be harmful to healthy tissues. As an alternative, plasmonic light-responsive nanoparticles, such as gold nanoparticles (AuNPs), are preferably used with continuous laser to decrease the energy threshold and reduce the bubbles area of action. It is also well-known that the utilization of the pulsed lasers instead of the continuous lasers decreases the needed AuNPs doses as well as laser power threshold. When well-confined bubbles are generated in biological environments, they play their own unique mechanical and optical roles. The collapse of a bubble can mechanically affect its surrounding area. Such a capability can be used for cargo delivery to cancer cells and cell surgery, destruction, and transfection. Moreover, the excellent ability of light scattering makes the bubbles suitable for cancer imaging. This review firstly provides an overview of the fundamental aspects of AuNPs-mediated bubbles and then their emerging applications in the field of cancer nanotechnology will be reviewed. Although the pre-clinical studies on the AuNP-mediated bubbles have shown promising data, it seems that this technique would not be applicable to every kind of cancer. The clinical application of this technique may basically be limited to the good accessible lesions like the superficial, intracavity and intraluminal tumors. The other essential challenges against the clinical translation of AuNP-mediated bubbles are also discussed. © 2020 Elsevier B.V

    Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy

    No full text
    Conventional cancer treatment methods suffer from many limitations such as non-specificity and low efficacy in discrimination between healthy and cancer cells. Recent developments in nanotechnology have introduced novel and smart therapeutic nanomaterials that basically take advantage of various targeting approaches. Targeted nanomaterials selectively bind to the cancer cells and affect them with minor effects on healthy cells. Folic acid (folate) is an essential molecule in DNA synthesis pathway which is highly needed for cancer cell duplication. Some certain cancer cells overexpress folate receptors higher than normal cells, and this fact is the basis of folate targeting strategy. There are many publications reporting various folate conjugated nanomaterials among which folate-conjugated gold nanoparticles hold great promises in targeted cancer therapy. Gold nanoparticles have been identified as promising candidates for new cancer therapy modalities because of biocompatibility, easy synthesis and functionalization, chemo-physical stability, and optical tunable characteristics. In the last decade, there has been a significant explosion in gold nanoparticles research, with a rapid increase in publications related to the area of biomedicine. Although there are many reports published on �gold nanoparticles� and �folate targeting,� there are a few reports on �folate-conjugated gold nanoparticles� in biomedical literature. This paper intends to review and illustrate the recent advances in biomedicine which have been designed on the basis of folate-conjugated gold nanoparticles. �© 2016, Springer-Verlag Berlin Heidelberg
    corecore