9 research outputs found

    New insights into the Tyrolean Iceman's origin and phenotype as inferred by whole-genome sequencing

    Get PDF
    The Tyrolean Iceman, a 5,300-year-old Copper age individual, was discovered in 1991 on the Tisenjoch Pass in the Italian part of the Otztal Alps. Here we report the complete genome sequence of the Iceman and show 100% concordance between the previously reported mitochondrial genome sequence and the consensus sequence generated from our genomic data. We present indications for recent common ancestry between the Iceman and present-day inhabitants of the Tyrrhenian Sea, that the Iceman probably had brown eyes, belonged to blood group O and was lactose intolerant. His genetic predisposition shows an increased risk for coronary heart disease and may have contributed to the development of previously reported vascular calcifications. Sequences corresponding to similar to 60% of the genome of Borrelia burgdorferi are indicative of the earliest human case of infection with the pathogen for Lyme borreliosis

    The 5300-year-old Helicobacter pylori genome of the Iceman

    No full text
    The stomach bacterium Helicobacter pylori is one of the most prevalent human pathogens. It has dispersed globally with its human host resulting in a distinct phylogeographic pattern that can be used to reconstruct both recent and ancient human migrations. The extant European population of H. pylori is known to be a hybrid between Asian and African bacteria, but there exist different hypotheses about when and where the hybridization took place, reflecting the complex demographic history of Europeans. Here, we present a 5,300-year-old H. pylori genome from a European Copper Age glacier mummy. The “Iceman” H. pylori is a nearly-pure representative of the bacterial population of Asian origin that existed in Europe prior to hybridization, suggesting the African population arrived in Europe within the last few thousand years

    New insights into the Tyrolean Iceman's origin and phenotype as inferred by whole-genome sequencing.

    No full text
    International audienceThe Tyrolean Iceman, a 5,300-year-old Copper age individual, was discovered in 1991 on the Tisenjoch Pass in the Italian part of the Ötztal Alps. Here we report the complete genome sequence of the Iceman and show 100% concordance between the previously reported mitochondrial genome sequence and the consensus sequence generated from our genomic data. We present indications for recent common ancestry between the Iceman and present-day inhabitants of the Tyrrhenian Sea, that the Iceman probably had brown eyes, belonged to blood group O and was lactose intolerant. His genetic predisposition shows an increased risk for coronary heart disease and may have contributed to the development of previously reported vascular calcifications. Sequences corresponding to ~60% of the genome of Borrelia burgdorferi are indicative of the earliest human case of infection with the pathogen for Lyme borreliosis

    The Iceman’s last meal consisted of fat, wild meat, and cereals

    Get PDF
    The history of humankind is marked by the constant adoption of new dietary habits affecting human physiology, metabolism, and even the development of nutrition-related disorders. Despite clear archaeological evidence for the shift from hunter-gatherer lifestyle to agriculture in Neolithic Europe [1], very little information exists on the daily dietary habits of our ancestors. By undertaking a complementary -omics approach combined with microscopy, we analyzed the stomach content of the Iceman, a 5,300-year-old European glacier mummy [2, 3]. He seems to have had a remarkably high proportion of fat in his diet, supplemented with fresh or dried wild meat, cereals, and traces of toxic bracken. Our multipronged approach provides unprecedented analytical depth, deciphering the nutritional habit, meal composition, and food-processing methods of this Copper Age individual

    Risk to fragmented DNA in dry, wet, and frozen states from computed tomography: a comparative theoretical study

    Full text link
    Computed tomography represents the gold standard in forensic and palaeopathological diagnosis. However, the X-rays used may affect the DNA quality through fragmentation and loss of genetic information. Previous work showed that the effects of ionizing radiation on dry DNA are non-significant with P < 10−8, which cannot be detected by means of polymerase chain reaction methods. In the present paper, complete analytical model that characterizes radiation effects on fragmented DNA in dry, wet, and frozen states is described. Simulation of radiation tracks in water phantom cells was performed using the Geant4-DNA toolkit. Cell hits by electrons with energies between 5 and 20 keV were simulated, and the formation of radiolytic products was assessed at a temperature of 298 K. The diffusion coefficient and the mean square displacement of reactive species were calculated by Stokes–Einstein–Smoluchowski relations at 273 K. Finally, DNA fragment damage was estimated using the density distribution of fragments calculated from atomic force microscopy images. The lowest probability of radiation-induced DNA damage was observed for dry state, with a range from 2.5 × 10−9 to 7.8 × 10−12 at 298 K, followed by that for frozen state, with a range from 0.9 to 4 × 10−7 at 273 K. The highest probability of radiation-induced DNA damage was demonstrated for fragmented DNA in wet state with a range from 2 to 9 × 10−7 at 298 K. These results significantly improve the interpretation of CT imaging in future studies in forensic and palaeopathological science
    corecore