803 research outputs found

    androgen receptor in breast cancer a wolf in sheep s clothing a lesson from prostate cancer

    Get PDF
    Abstract The possibility that a receptor for androgen is expressed in Breast Cancer (BC) is fascinating given that the tumor is predominantly estrogen-dependent. The androgen receptor (AR) is emerging as a new marker and a potential new therapeutic target in the treatment of BC patients. The recent availability of selective AR inhibitors ( e.g. bicalutamide, enzalutamide, apalutamide) approved for the treatment of prostate cancer has opened up the possibility to use them in BC patients whose tumors express AR. However, AR appears to have various functions according to the BC subtype, e.g. ER-positive or triple negative BC and the patient prognosis is different on the basis of the presence or absence of estrogen and progesterone receptors. Moreover, a different AR expression was seen according to the various ethnicities. Of note, in population at low economical income, the availability of anti-AR compounds at low cost could open the possibility to treat AR-positive triple negative BC that are highly present in these populations. Up to now, AR detection is not routinely performed in BC. The standardization of AR detection methods could render AR an easily detectable marker in primary BC and metastatic samples. Nevertheless, the overall concordance of 60% of AR expression in primary tumor and metastasis implies that a clinician who need the AR value to give anti-AR therapy should have the data on both the tumor materials. Following the comprehensive studies on prostate cancer the possibility to test AR on liquid biopsies suggest the use of this biomarker for a real-time disease monitoring. Finally, considering the possibility to treat patients with immune checkpoint inhibitors there is the need to know the relation between microenvironment and AR in BC

    Know your enemy: Genetics, aging, exposomic and inflammation in the war against triple negative breast cancer.

    Get PDF
    Triple negative breast cancer (TNBC) is one of the most biologically aggressive and very often lethal breast disease. It is one of the most puzzling women malignancies, and it currently appears not to be a good candidate to a standardized, unanimously accepted and sufficiently active therapeutic strategy. Fast proliferating and poorly differentiated, it is histopathologically heterogeneous, and even more ambiguous at the molecular level, offering few recurrent actionable targets to the clinicians. It is a formidable and vicious enemy that requires a huge investigational effort to find its vital weak spots. Here, we provide a broad review of "old but gold" biological aspects that taken together may help in finding new TNBC management strategies. A better and updated knowledge of the origins, war-like tactics, refueling mechanisms and escape routes of TNBC, will help in moving the decisive steps towards its final defeat

    Exosome-delivered microRNAs promote IFN-α secretion by human plasmacytoid DCs via TLR7

    Get PDF
    The excessive production of type I IFNs is a hallmark and a main pathogenic mechanism of many autoimmune diseases, including systemic lupus erythematosus (SLE). In these pathologies, the sustained secretion of type I IFNs is dependent on the improper activation of plasmacytoid DCs (pDCs) by self-nucleic acids. However, the nature and origin of pDC-activating self-nucleic acids is still incompletely characterized. Here, we report that exosomes isolated from the plasma of SLE patients can activate the secretion of IFN-α by human blood pDCs in vitro. This activation requires endosomal acidification and is recapitulated by microRNAs isolated from exosomes, suggesting that exosome-delivered microRNAs act as self-ligands of innate single-stranded endosomal RNA sensors. By using synthetic microRNAs, we identified an IFN induction motif that is responsible for the TLR7-dependent activation, maturation, and survival of human pDCs. These findings identify exosome-delivered microRNAs as potentially novel TLR7 endogenous ligands able to induce pDC activation in SLE patients. Therefore, microRNAs may represent novel pathogenic mediators in the onset of autoimmune reactions and potential therapeutic targets in the treatment of type I IFN-mediated diseases

    Genetic dissection of maize phenology using an intraspecific introgression library

    Get PDF
    Background: Collections of nearly isogenic lines where each line carries a delimited portion of a donor source genome into a common recipient genetic background are known as introgression libraries and have already shown to be instrumental for the dissection of quantitative traits. By means of marker-assisted backcrossing, we have produced an introgression library using the extremely early-flowering maize (Zea mays L.) variety Gasp\ue9 Flint and the elite line B73 as donor and recipient genotypes, respectively, and utilized this collection to investigate the genetic basis of flowering time and related traits of adaptive and agronomic importance in maize.Results: The collection includes 75 lines with an average Gasp\ue9 Flint introgression length of 43.1 cM. The collection was evaluated for flowering time, internode length, number of ears, number of nodes (phytomeres), number of nodes above the ear, number and proportion of nodes below the ear and plant height. Five QTLs for flowering time were mapped, all corresponding to major QTLs for number of nodes. Three additional QTLs for number of nodes were mapped. Besides flowering time, the QTLs for number of nodes drove phenotypic variation for plant height and number of nodes below and above the top ear, but not for internode length. A number of apparently Mendelian-inherited phenotypes were also observed.Conclusions: While the inheritance of flowering time was dominated by the well-known QTL Vgt1, a number of other important flowering time QTLs were identified and, thanks to the type of plant material here utilized, immediately isogenized and made available for fine mapping. At each flowering time QTL, early flowering correlated with fewer vegetative phytomeres, indicating the latter as a key developmental strategy to adapt the maize crop from the original tropical environment to the northern border of the temperate zone (southern Canada), where Gasp\ue9 Flint was originally cultivated. Because of the trait differences between the two parental genotypes, this collection will serve as a permanent source of nearly isogenic materials for multiple studies of QTL analysis and cloning. \ua9 2011 Salvi et al; licensee BioMed Central Ltd

    Age-specific effects of estrogen receptors' polymorphisms on the bone traits in healthy fertile women: the BONTURNO study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Skeletal characteristics such as height (Ht), bone mineral density (BMD) or bone turnover markers are strongly inherited. Common variants in the genes encoding for estrogen receptor alpha (ESR1) and beta (ESR2) are proposed as candidates for influencing bone phenotypes at the population level.</p> <p>Methods</p> <p>We studied 641 healthy premenopausal women aged 20–50 years (yrs) participating into the BONTURNO study. Exclusion criteria were irregular cyclic menses, low trauma fracture, metabolic bone or chronic diseases. Serum C-telopeptide of type I collagen (CTX), osteocalcin (OC), and N-terminal propeptide of type I procollagen (P1NP) were measured in all enrolled subjects, who underwent to lumbar spine (LS), total hip (TH) and femoral neck (FN) BMD evaluation by DXA. Five hundred seventy Caucasian women were genotyped for ESR1 rs2234693 and rs9340799 and ESR2 rs4986938 polymorphisms.</p> <p>Results</p> <p>Although no genotype differences were found in body parameters, subjects with combined ESR1 CCGG plus ESR2 AA-AG genotype were taller than those with opposite genotype (P = 0.044). Moreover, ESR1 rs2234693 genotypes correlated with family history of osteoporosis (FHO) and hip fracture (FHF) (P < 0.01), while ESR2 AA-AC genotypes were strongly associated with FHF (OR 2.387, 95% CI 1.432–3.977; P < 0.001).</p> <p>When clustered by age, 20–30 yrs old subjects, having at least one ESR1 rs2234693 C allele presented lower LS- (P = 0.008) and TH-BMD (P = 0.047) than TT genotypes. In 41–50 yrs age, lower FN-BMD was associated with ESR2 AA (P = 0.0180) subjects than in those with the opposite genotype. ESR1 rs2234693 and rs9340799 and ESR2 rs4986938 polymorphisms did not correlate with age-adjusted values of OC, CTX and P1NP.</p> <p>Conclusion</p> <p>These findings support the presence of age-specific effects of ESR1 and ESR2 polymorphisms on various skeletal traits in healthy fertile women.</p

    Cloning the barley nec3 disease lesion mimic mutant using complementation by sequencing

    Get PDF
    Disease lesion mimic (DLM) or necrotic mutants display necrotic lesions in the absence of pathogen infections. They can show improved resistance to some pathogens and their molecular dissection can contribute to revealing components of plant defense pathways. Although forward-genetics strategies to find genes causal to mutant phenotypes are available in crops, these strategies require the production of experimental cross populations, mutagenesis, or gene editing and are time- and resource-consuming or may have to deal with regulated plant materials. In this study, we described a collection of 34 DLM mutants in barley (Hordeum vulgare L.) and applied a novel method called complementation by sequencing (CBS), which enables the identification of the gene responsible for a mutant phenotype given the availability of two or more chemically mutagenized individuals showing the same phenotype. Complementation by sequencing relies on the feasibility to obtain all induced mutations present in chemical mutants and on the low probability that different individuals share the same mutated genes. By CBS, we identified a cytochrome P450 CYP71P1 gene as responsible for orange blotch DLM mutants, including the historical barley nec3 locus. By comparative phylogenetic analysis we showed that CYP71P1 gene family emerged early in angiosperm evolution but has been recurrently lost in some lineages including Arabidopsis thaliana (L.) Heynh. Complementation by sequencing is a straightforward cost-effective approach to clone genes controlling phenotypes in a chemically mutagenized collection. The TILLMore (TM) collection will be instrumental for understanding the molecular basis of DLM phenotypes and to contribute knowledge about mechanisms of host-pathogen interaction

    Bartonella henselae Persistence within Mesenchymal Stromal Cells Enhances Endothelial Cell Activation and Infectibility That Amplifies the Angiogenic Process (*Scutera S and Mitola S co-first authors; Sozzani S and Musso T co-last authors)

    Get PDF
    Some bacterial pathogens can manipulate the angiogenic response, suppressing or inducing it for their own ends. In humans, Bartonella henselae is associated with cat-scratch disease and vasculoproliferative disorders such as bacillary angiomatosis and bacillary peliosis. Although endothelial cells (ECs) support the pathogenesis of B. henselae, the mechanisms by which B. henselae induces EC activation are not completely clear, as well as the possible contributions of other cells recruited at the site of infection. Mesenchymal stromal cells (MSCs) are endowed with angiogenic potential and play a dual role in infections, exerting antimicrobial properties but also acting as a shelter for pathogens. Here, we delved into the role of MSCs as a reservoir of B. henselae and modulator of EC functions. B. henselae readily infected MSCs and survived in perinuclearly bound vacuoles for up to 8 days. Infection enhanced MSC proliferation and the expression of epidermal growth factor receptor (EGFR), Toll-like receptor 2 (TLR2), and nucleotide-binding oligomerization domain-containing protein 1 (NOD1), proteins that are involved in bacterial internalization and cytokine production. Secretome analysis revealed that infected MSCs secreted higher levels of the proangiogenic factors vascular endothelial growth factor (VEGF), fibroblast growth factor 7 (FGF-7), matrix metallopeptidase 9 (MMP-9), placental growth factor (PIGF), serpin E1, thrombospondin 1 (TSP-1), urokinase-type plasminogen activator (uPA), interleukin 6 (IL-6), platelet-derived growth factor D (PDGF-D), chemokine ligand 5 (CCL5), and C-X-C motif chemokine ligand 8 (CXCL8). Supernatants from B. henselae-infected MSCs increased the susceptibility of ECs to B. henselae infection and enhanced EC proliferation, invasion, and reorganization in tube-like structures. Altogether, these results indicate MSCs as a still underestimated niche for persistent B. henselae infection and reveal MSC-EC cross talk that may contribute to exacerbate bacterium-induced angiogenesis and granuloma formation

    SARS-CoV-2-Associated ssRNAs Activate Human Neutrophils in a TLR8-Dependent Fashion

    Get PDF
    COVID-19 disease is characterized by a dysregulation of the innate arm of the immune system. However, the mechanisms whereby innate immune cells, including neutrophils, become activated in patients are not completely understood. Recently, we showed that GU-rich RNA sequences from the SARS-CoV-2 genome (i.e., SCV2-RNA1 and SCV2-RNA2) activate dendritic cells. To clarify whether human neutrophils may also represent targets of SCV2-RNAs, neutrophils were treated with either SCV2-RNAs or, as a control, R848 (a TLR7/8 ligand), and were then analyzed for several functional assays and also subjected to RNA-seq experiments. Results highlight a remarkable response of neutrophils to SCV2-RNAs in terms of TNFα, IL-1ra, CXCL8 production, apoptosis delay, modulation of CD11b and CD62L expression, and release of neutrophil extracellular traps. By RNA-seq experiments, we observed that SCV2-RNA2 promotes a transcriptional reprogramming of neutrophils, characterized by the induction of thousands of proinflammatory genes, similar to that promoted by R848. Furthermore, by using CU-CPT9a, a TLR8-specific inhibitor, we found that SCV2-RNA2 stimulates neutrophils exclusively via TLR8-dependent pathways. In sum, our study proves that single-strand RNAs from the SARS-CoV-2 genome potently activate human neutrophils via TLR8, thus uncovering a potential mechanism whereby neutrophils may contribute to the pathogenesis of severe COVID-19 disease

    Clinical scenarios of hypertrophic cardiomyopathy-related mortality : Relevance of age and stage of disease at presentation

    Get PDF
    The evolving epidemiology of hypertrophic cardiomyopathy (HCM) has progressively changed our perception of HCM-related mortality. However, recent studies detailing individual causes of death based on age and clinical setting are lacking. Thus, the present study aimed to describe the modes of death in a consecutive cohort of HCM patients based on presenting clinical features and stage of disease.By retrospective analysis of a large HCM cohort, we identified 161 patients with >1 year follow-up who died between 2000 and 2020 and thoroughly investigated their modes of death. HCM stage at presentation was defined as "classic", "adverse remodeling" or "overt dysfunction".Of the 161 patients, 103 (64%) died of HCM-related causes, whereas 58 (36%) died of non-HCM-related causes. Patients who died of HCM-related causes were younger than those who died of non-HCM related causes. The most common cause of death was heart failure (HF). Sudden cardiac death (SCD) ranked third, after non cardiovascular death, and mostly occurred in young individuals. The proportion of HF related death and SCD per stage of disease was 14% and 27% in "classic", 38% and 21% in "adverse remodeling" and 74% and 10% in "overt dysfunction".Most HCM patients die due to complications of their own disease, mainly in the context of HF. While SCD tends to be juvenile, HF related deaths often occur in age groups no longer amenable to cardiac transplant. Modes of death vary with the stage of disease, with SCD becoming less prevalent in more advanced phases, when competitive risk of HF becomes overwhelming

    Detection and Investigation of Extracellular Vesicles in Serum and Urine Supernatant of Prostate Cancer Patients

    Get PDF
    none13no: Prostate Cancer (PCa) is one of the most frequently identified urological cancers. PCa patients are often over-diagnosed due to still not highly specific diagnostic methods. The need for more accurate diagnostic tools to prevent overestimated diagnosis and unnecessary treatment of patients with non-malignant conditions is clear, and new markers and methods are strongly desirable. Extracellular vesicles (EVs) hold great promises as liquid biopsy-based markers. Despite the biological and technical issues present in their detection and study, these particles can be found highly abundantly in the biofluid and encompass a wealth of macromolecules that have been reported to be related to many physiological and pathological processes, including cancer onset, metastasis spreading, and treatment resistance. The present study aims to perform a technical feasibility study to develop a new workflow for investigating EVs from several biological sources. Serum and urinary supernatant EVs of PCa, benign prostatic hyperplasia (BPH) patients, and healthy donors were isolated and investigated by a fast, easily performable, and cost-effective cytofluorimetric approach for a multiplex detection of 37 EV-antigens. We also observed significant alterations in serum and urinary supernatant EVs potentially related to BPH and PCa, suggesting a potential clinical application of this workflow.openSalvi, Samanta; Bandini, Erika; Carloni, Silvia; Casadio, Valentina; Battistelli, Michela; Salucci, Sara; Erani, Ilaria; Scarpi, Emanuela; Gunelli, Roberta; Cicchetti, Giacomo; Guescini, Michele; Bonafè, Massimiliano; Fabbri, FrancescoSalvi, Samanta; Bandini, Erika; Carloni, Silvia; Casadio, Valentina; Battistelli, Michela; Salucci, Sara; Erani, Ilaria; Scarpi, Emanuela; Gunelli, Roberta; Cicchetti, Giacomo; Guescini, Michele; Bonafè, Massimiliano; Fabbri, Francesc
    corecore