111 research outputs found

    Cellular mechanisms of arrhythmias: from rate-dependent APD variations to heterocellular coupling

    Get PDF
    It is well established that a variety of pathological conditions induces structural and electrical remodeling of the heart which can lead to heart failure and cardiac arrhythmias. Clinically, structural remodeling is characterized by changes in the shape, size and function of the heart. These changes are based on diverse and complex cellular reactions to injury and involve both cardiomyocytes and non-cardiomyocytes. Histopathologically, remodeling typically involves cardiomyocyte hypertrophy, activation and proliferation of fibroblast, increased extracellular matrix deposition and cell death. Functionally, structural remodeling induces mechanical dysfunction and is accompanied by an increased likelihood of occurrence of life-threatening cardiac arrhythmias (Adamson et al., 2005). The electrical remodeling is usually defined as changes related to ion channels, transporters, passive electrical properties, redistribution of the gap junctions and it involves disturbances of the initiation, conduction, and coordination of the electrical stimulus in the heart. An increase in temporal variability of repolarization has been found in different pathologies to follow the electrical remodeling of the heart. In the first part of my work I have studied heterocellular electrotonic interactions between myofibroblasts and cardiomyocytes, whereas in the second part I have focused on temporal variability of ventricular cardiomyocytes repolarization. In the appendix I have studied the mechanisms of a way to electrically elicit action potentials in single cells: “the anode break excitation”

    Idiopathic aortitis: an underrecognized vasculitis

    Get PDF
    Aortitis is a general term denoting inflammation of the aortic wall. Various infectious and non-infectious diseases can be complicated by aortitis; in addition, isolated idiopathic aortitis has also been described. In a 12-year nationwide Danish population-based study, the prevalence of aortitis among 1,210 resected thoracic aorta samples was 6.1%, with nearly three-quarters of cases being idiopathic. Identified risk factors for aortitis included advanced age, a history of connective tissue disease, diabetes mellitus, and heart valve pathology. As in virtually all pathological studies, this study has a bias toward reporting the most severe cases of aortitis requiring surgical repair

    Modification of actin fibers changes the electrical phenotype of cardiac myofibroblasts

    Get PDF
    Background: Slow conduction and ectopic activity are major determinants of cardiac arrhythmogenesis. Both of these conditions can be elicited by myofibroblasts (MFBs) following establishment of heterocellular gap junctional coupling with cardiomyocytes. MFBs appear during structural remodeling of the heart and are characterized by the expression of α-smooth muscle actin (α-SMA) containing stress fibers. In this study, we investigated whether pharmacological interference with the actin cytoskeleton affects myofibroblast arrhythmogeneicity. Methods: Experiments were performed with patterned growth strands of neonatal rat ventricular cardiomyocytes coated with cardiac MFBs. Impulse conduction velocity (θ) and maximal upstroke velocities of propagated action potentials (dV/dtmax), expressed as % action potential amplitude change (%APA) per ms, were measured optically using voltage sensitive dyes. Actin was destabilized by latrunculin B (LtB) and cytochalasin D and stabilized with jasplakinolide. Data are given as mean ± S.D. (n = 5-22). Single cell electrophysiology was assessed using standard patch-clamp techniques. Results: As revealed by immunocytochemistry, exposure of MFBs to LtB (0.01-10 μmol/L) profoundly disrupted stress fibers which led to drastic changes in cell morphology with MFBs assuming an astrocyte-like shape. In control cardiomyocyte strands (no MFB coat), LtB had negligible effects on θ and dV/dtmax. In contrast, LtB applied to MFB-coated strands increased θ dose-dependently from 197 ± 35 mm/s to 344 ± 26 mm/s and dV/dtmax from 38 ± 5 to 78 ± 3% APA/ms, i.e., to values virtually identical to those of cardiomyocyte control strands (339 ± 24 mm/s; 77 ± 3% APA/ms). Highly similar results were obtained when exposing the preparations to cytochalasin D. In contrast, stabilization of actin with increasing concentrations of jasplakinolide exerted no significant effects on impulse conduction characteristics in MFB-coated strands. Whole-cell patch-clamp experiments showed that LtB hyperpolarized MFBs from -25 mV to -50 mV, thus limiting their depolarizing effect on cardiomyocytes which was shown before to cause arrhythmogenic slow conduction and ectopic activity. Conclusion: Pharmacological interference with the actin cytoskeleton of cardiac MFBs affects their electrophysiological phenotype to such an extent that they loose their detrimental effects on cardiomyocyte electrophysiology. This result might form a basis for the development of therapeutic strategies aimed at limiting the arrhythmogenic potential of MFBs

    Resveratrol reduces myofibroblast arrhythmogenicity

    Get PDF
    Background: Among grape skin polyphenols, trans-resveratrol (RES) has been reported to slow the development of cardiac fibrosis and to affect myofibroblast (MFB) differentiation. Because MFBs induce slow conduction and ectopic activity following heterocellular gap junctional coupling to cardiomyocytes, we investigated whether RES and its main metabolites affect arrhythmogenic cardiomyocyte-MFB interactions. Methods: Experiments were performed with patterned growth strands of neonatal rat ventricular cardiomyocytes coated with cardiac MFBs. Impulse propagation characteristics were measured optically using voltage-sensitive dyes. Long-term video recordings served to characterize drug-related effects on ectopic activity. Data are given as means ± S.D. (n = 4–20). Results: Exposure of pure cardiomyocyte strands to RES at concentrations up to 10 µmol/L had no significant effects on impulse conduction velocity (θ) and maximal action potential upstroke velocities (dV/dtmax). By contrast, in MFB-coated strands exhibiting slow conduction, RES enhanced θ with an EC50 of ~10 nmol/L from 226 ± 38 to 344 ± 24 mm/s and dV/dtmax from 48 ± 7 to 69 ± 2%APA/ms, i.e., to values of pure cardiomyocyte strands (347 ± 33 mm/s; 75 ± 4%APA/ms). Moreover, RES led to a reduction of ectopic activity over the course of several hours in heterocellular preparations. RES is metabolized quickly in the body; therefore, we tested the main known metabolites for functional effects and found them similarly effective in normalizing conduction with EC50s of ~10 nmol/L (3-OH-RES), ~20 nmol/L (RES-3-O-β-glucuronide) and ~10 nmol/L (RES-sulfate), respectively. At these concentrations, neither RES nor its metabolites had any effects on MFB morphology and α-smooth muscle actin expression. This suggests that the antiarrhythmic effects observed were based on mechanisms different from a change in MFB phenotype. Conclusions: The results demonstrate that RES counteracts MFB-dependent arrhythmogenic slow conduction and ectopic activity at physiologically relevant concentrations. Because RES is rapidly metabolized following intestinal absorption, the finding of equal antiarrhythmic effectiveness of the main RES metabolites warrants their inclusion in future studies of potentially beneficial effects of these substances on the heart

    Aggravation of cardiac myofibroblast arrhythmogeneicity by mechanical stress

    Get PDF
    Aims Myofibroblasts (MFBs) as appearing in the myocardium during fibrotic remodelling induce slow conduction following heterocellular gap junctional coupling with cardiomyocytes (CMCs) in bioengineered tissue preparations kept under isometric conditions. In this study, we investigated the hypothesis that strain as developed during diastolic filling of the heart chambers may modulate MFB-dependent slow conduction. Methods and results Effects of defined levels of strain on single-cell electrophysiology (patch clamp) and impulse conduction in patterned growth cell strands (optical mapping) were investigated in neonatal rat ventricular cell cultures (Wistar) grown on flexible substrates. While 10.5% strain only minimally affected conduction times in control CMC strands (+3.2%, n.s.), it caused a significant slowing of conduction in the fibrosis model consisting of CMC strands coated with MFBs (conduction times +26.3%). Increased sensitivity to strain of the fibrosis model was due to activation of mechanosensitive channels (MSCs) in both CMCs and MFBs that aggravated the MFB-dependent baseline depolarization of CMCs. As found in non-strained preparations, baseline depolarization of CMCs was partly due to the presence of constitutively active MSCs in coupled MFBs. Constitutive activity of MSCs was not dependent on the contractile state of MFBs, because neither stimulation (thrombin) nor suppression (blebbistatin) thereof significantly affected conduction velocities in the non-strained fibrosis model. Conclusions The findings demonstrate that both constitutive and strain-induced activity of MSCs in MFBs significantly enhance their depolarizing effect on electrotonically coupled CMCs. Ensuing aggravation of slow conduction may contribute to the precipitation of strain-related arrhythmias in fibrotically remodelled heart

    Vasculitis of the gastrointestinal tract in chronic periaortitis

    Get PDF
    The term "chronic periaortitis" (CP), proposed by Mitchinson in 1984, comprises 3 main entities: idiopathic retroperitoneal fibrosis (IRF), inflammatory abdominal aortic aneurysms (IAAAs), and perianeurysmal retroperitoneal fibrosis (PRF).The presence of constitutional symptoms, high acute-phase reactants, positive autoantibodies, and associated autoimmune diseases suggests a systemic inflammatory process. Histopathologic findings show vasculitis with fibrinoid necrosis involving the aortic vasa vasorum as well as the small and medium retroperitoneal vessels.We reviewed the medical records of 608 patients with a diagnosis of vasculitis involving the gastrointestinal (GI) tract at the Mayo Clinic between January 1996 and December 2007. Only patients with biopsy-proven or typical angiographic findings of vasculitis localized to the GI tract were included.Five patients were identified with evidence of CP (1 patient with PRF, 1 with IRF, and 3 with IAAAs). Three patients were men, and the median age at diagnosis was 49 years. The diagnosis of GI vasculitis and CP was made simultaneously in 4 patients. At the time of onset, all patients had abdominal pain and constitutional manifestations; the median erythrocyte sedimentation rate was 62.5 mm/1 h (range, 20-86 mm/1 h). All patients had evidence of mesenteric vasculitis at angiography. Three patients also had associated renal artery stenoses. Abdominal computed tomography showed spleen infarcts in 2 patients, bowel wall thickening in 1, and liver infarction in 1. Two patients underwent surgical intervention for acute abdomen; there was histologic evidence of small bowel infarcts and infarction of the spleen and liver in 1. Oral prednisone was administered to all 5 patients (median starting dose, 60 mg/d; range, 25-80 mg/d). Three patients also received immunosuppressive agents, 1 tamoxifen, and 1 anti-tumor necrosis factor therapy. All patients had at least 1 relapse or recurrence of vasculitis, but at last visit, GI vasculitis and CP were in remission in all 5 patients.This study provides evidence that GI manifestations due to mesenteric vasculitis may be associated with CP. Vasculitic involvement of the renal arteries is also frequently present in these patients. Aggressive immunosuppressive treatment should be promptly initiated to forestall abdominal complications. These findings reinforce the hypothesis that a vasculitic process plays an important role in the pathogenesis of CP

    Flares in Biopsy-Proven Giant Cell Arteritis in Northern Italy: Characteristics and Predictors in a Long-Term Follow-Up Study

    Get PDF
    This study evaluated the frequency, timing, and characteristics of flares in a large cohort of Italian patients with biopsy-proven giant cell arteritis (GCA) and to identify factors at diagnosis able to predict the occurrence of flares. We evaluated 157 patients with biopsy-proven transmural GCA diagnosed and followed at the Rheumatology Unit of Reggio Emilia Hospital (Italy) for whom sufficient information was available from the time of diagnosis until at least 4 years of follow-up. Fifty-seven patients (36.5%) experienced ≥1 flares. Fifty-one (46.4%) of the 110 total flares (88 relapses and 22 recurrences) were experienced during the first 2 years after diagnosis. The majority of relapses occurred with doses of prednisone ≤ 10 mg/day (82.9%), whereas only 3.4% of relapses occurred for doses ≥ 25 mg/day. Polymyalgia rheumatica (46.5%) and cranial symptoms (41.9%) were the most frequent manifestations at the time of the first relapse. Cumulative prednisone dose during the first year and total cumulative prednisone dose were significantly higher in flaring patients compared with those without flares (7.8 ± 2.4 vs 6.7 ± 2.4 g, P = 0.02; 15.5 ± 8.9 vs 10.0 ± 9.2 g, P = 0.0001, respectively). The total duration of prednisone treatment was longer in flaring patients (58 ± 44 vs 30 ± 30 months, P = 0.0001).Patients with disease flares had at diagnosis more frequently systemic manifestations (P = 0.02) and fever ≥ 38°C (P = 0.02), significantly lower hemoglobin levels (P = 0.05), more frequent presence at temporal artery biopsy (TAB) specimens of giant cells (P = 0.04) and intraluminal acute thrombosis (P = 0.007), and more moderate/severe arterial inflammation (P = 0.009) compared with those without flares. In the multivariate model fever ≥ 38 °C (hazard ratio 2.14; 95% confidence interval, 1.06-4.32, P = 0.03) and the severity of inflammatory infiltrate (moderate/severe versus mild) (hazard ratio 5.41; 95% confidence interval, 1.64-17.87, P = 0.006) were significantly associated with an increased risk of flares. In conclusion, a flaring course is common in GCA and it is associated with prolonged GC requirements. Fever at diagnosis and severity of inflammation at TAB appear to predict the development of disease flares

    Unlocking cardiac motion: assessing software and machine learning for single-cell and cardioid kinematic insights

    Get PDF
    The heart coordinates its functional parameters for optimal beat-to-beat mechanical activity. Reliable detection and quantification of these parameters still represent a hot topic in cardiovascular research. Nowadays, computer vision allows the development of open-source algorithms to measure cellular kinematics. However, the analysis software can vary based on analyzed specimens. In this study, we compared different software performances in in-silico model, in-vitro mouse adult ventricular cardiomyocytes and cardioids. We acquired in-vitro high-resolution videos during suprathreshold stimulation at 0.5-1-2 Hz, adapting the protocol for the cardioids. Moreover, we exposed the samples to inotropic and depolarizing substances. We analyzed in-silico and in-vitro videos by (i) MUSCLEMOTION, the gold standard among open-source software; (ii) CONTRACTIONWAVE, a recently developed tracking software; and (iii) ViKiE, an in-house customized video kinematic evaluation software. We enriched the study with three machine-learning algorithms to test the robustness of the motion-tracking approaches. Our results revealed that all software produced comparable estimations of cardiac mechanical parameters. For instance, in cardioids, beat duration measurements at 0.5 Hz were 1053.58 ms (MUSCLEMOTION), 1043.59 ms (CONTRACTIONWAVE), and 937.11 ms (ViKiE). ViKiE exhibited higher sensitivity in exposed samples due to its localized kinematic analysis, while MUSCLEMOTION and CONTRACTIONWAVE offered temporal correlation, combining global assessment with time-efficient analysis. Finally, machine learning reveals greater accuracy when trained with MUSCLEMOTION dataset in comparison with the other software (accuracy > 83%). In conclusion, our findings provide valuable insights for the accurate selection and integration of software tools into the kinematic analysis pipeline, tailored to the experimental protocol

    TLR-4 and VEGF polymorphisms in chronic periaortitis

    Get PDF
    Chronic periaortitis (CP) is a rare disease that is characterised by fibro-inflammatory tissue surrounding the abdominal aorta and has both non-aneurysmal (idiopathic retroperitoneal fibrosis [IRF]) and aneurysmal forms (inflammatory abdominal aortic aneurysm [IAAA]). We investigated whether toll-like receptor 4 (TLR-4) and vascular endothelial growth factor (VEGF) polymorphisms were associated with susceptibility to, and the clinical features of CP
    • …
    corecore