
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1782  | https://doi.org/10.1038/s41598-024-52081-9

www.nature.com/scientificreports

Unlocking cardiac motion: 
assessing software and machine 
learning for single‑cell and cardioid 
kinematic insights
Margherita Burattini 1,2, Francesco Paolo Lo Muzio 2,3, Mirko Hu 2, Flavia Bonalumi 2,  
Stefano Rossi 2, Christina Pagiatakis 4,5, Nicolò Salvarani 4,6, Lorenzo Fassina 7, 
Giovanni Battista Luciani 1 & Michele Miragoli 2,4*

The heart coordinates its functional parameters for optimal beat‑to‑beat mechanical activity. Reliable 
detection and quantification of these parameters still represent a hot topic in cardiovascular research. 
Nowadays, computer vision allows the development of open‑source algorithms to measure cellular 
kinematics. However, the analysis software can vary based on analyzed specimens. In this study, 
we compared different software performances in in-silico model, in-vitro mouse adult ventricular 
cardiomyocytes and cardioids. We acquired in-vitro high‑resolution videos during suprathreshold 
stimulation at 0.5‑1‑2 Hz, adapting the protocol for the cardioids. Moreover, we exposed the 
samples to inotropic and depolarizing substances. We analyzed in-silico and in-vitro videos by (i) 
MUSCLEMOTION, the gold standard among open‑source software; (ii) CONTRACTIONWAVE, 
a recently developed tracking software; and (iii) ViKiE, an in‑house customized video kinematic 
evaluation software. We enriched the study with three machine‑learning algorithms to test the 
robustness of the motion‑tracking approaches. Our results revealed that all software produced 
comparable estimations of cardiac mechanical parameters. For instance, in cardioids, beat duration 
measurements at 0.5 Hz were 1053.58 ms (MUSCLEMOTION), 1043.59 ms (CONTRACTIONWAVE), 
and 937.11 ms (ViKiE). ViKiE exhibited higher sensitivity in exposed samples due to its localized 
kinematic analysis, while MUSCLEMOTION and CONTRACTIONWAVE offered temporal correlation, 
combining global assessment with time‑efficient analysis. Finally, machine learning reveals greater 
accuracy when trained with MUSCLEMOTION dataset in comparison with the other software 
(accuracy > 83%). In conclusion, our findings provide valuable insights for the accurate selection 
and integration of software tools into the kinematic analysis pipeline, tailored to the experimental 
protocol.

The beating heart is the result of optimal electromechanical synchronization. Due to the high interconnection 
between electrical and mechanical activities, researchers developed multiple types of models trying to unveil and 
quantify both from cellular to whole organ  levels1–5. Extensive and exhaustive studies have been performed on 
the electrical counterpart in both physiological and pathological conditions, starting from single cells and organ 
 slices6–8, and broadening to ex-vivo9 and in-vivo  models10,11. Thanks to the recently improved computation ability, 
both heart functions were studied with in-silico simulations, as an alternative to animal  experimentation12–14. 
When purely measuring the mechanical activity of the heart, in-vitro studies face multiple challenges compared 
to ex-vivo and in-vivo. Specifically, kinematics and contraction force measured in-vitro need to address the 
micrometric cell dimension and forces expressed and require specific and expensive  instrumentation15. The 
advent of computer vision technologies in biology brought alternative solutions to cell movement tracking and 
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 analysis16,17. In detail, motion tracking analysis aided by high-temporal and spatial resolution cameras has been 
capable of recording the whole kinematic  evaluation18–22. Traction force microscopy is an expression of this 
computer vision approach, which has the seeding of the cells on materials with well-known mechanical proper-
ties to indirectly estimate the force of contraction as a  counterside23–28. In the case of samples with weak or even 
without attachment points, the benchmark in vision-aided motion analysis has been the  IonOptix® system, for 
over two  decades29–31. This software can evaluate the micrometric sarcomere shortening in single isolated cells 
and recently expanded to movement in cardiomyocyte (CM) layers derived from human induced pluripotent 
stem cells (hiPSCs-CM)29,32. Many other algorithms based on information extracted from video  frames33,34, 
were implemented to develop open-source, highly flexible, and user-friendly software capable of estimating the 
kinematics from video recordings, while enabling researchers to tailor the code to their experimental  needs35. 
Noteworthy, MUSCLEMOTION (MM)36 has set itself as one of the most used open-source software based on 
image information (e.g., image intensity-based segmentation and tracking). Moreover, open-source solutions 
help to evaluate kinematics in custom high-throughput platforms with advanced image processing such as opti-
cal flow  algorithms37,38. Among many tracking algorithms, which base their computation on this concept, one 
worth mentioning is CONTRACTIONWAVE (CW) validated in the recent work from Scalzo et al.39. The study 
produced a user-friendly, python-based interface able to analyze in parallel multiple videos and it was validated 
with both single cells and hiPSCs-CM 2D layers. Lastly, other notable solutions are the use of algorithms based 
on marker-aided tracing derived by the detection of blob objects with different shapes and  dimensions40,41. This 
analysis is mainly based on the hypothesis of rigid blob movement, which is a valid assumption for rod-shaped 
cells with rapid 2D shortening as well as 3D in-vitro models such as the attachment points of engineered heart 
tissue (EHT)21,42. One method that demonstrated both consistency and flexibility is the Video Kinematic Evalu-
ation (ViKiE). In this software, the analysis begins by tracking the marker trajectories which are then analyzed 
by a customizable  MATLAB® code to retrieve kinematic parameters either in-vitro or in-vivo at the preclinical 
and clinical  level18,43–47.

The performance of the listed software varies depending on the samples  analyzed48. Specifically, the in-vitro 
solutions range from adult and neonatal CMs isolated from the tissues to hiPSCs-CM 2D layers and 3D 
 constructs49. One of the biological models driving the interest of scientists is represented by cardioids, which 
can be highly reproducible and provide the chance to make a high-throughput study yet limited by fetal-like 
gene  expression50. The cardioids are normally formed by CMs, differentiated from hiPSCs, and demonstrated 
to resemble in-vitro the organ-like organization more than  expected51,52. Moreover, hiPSCs-CM were shown 
to express caffeine-responsive stores for sarcoplasmic reticulum  Ca2+, offering the opportunity to study their 
response with well-known inotropic  substances53.

The relevance of the models described, mixed to an engineering approach, brought to a faster and more 
efficient elaboration of the information, with high potential and flexibility across different  fields54–58.In fact, the 
use of machine learning (ML) in biology and medicine allowed to unveil correlations and phenomena hidden 
in the vast amount of data, outperforming the analysis of experts in the field, for example in the interpretation 
of the  electrocardiogram59–63. Supervision is based on previously labeled reference datasets which are used to 
train ML algorithms to predict the class of each unlabeled data  point58. Classification has already been used in 
the in-vitro context for several tasks, for instance, to check the quality of CM derived from differentiated human 
iPS  cells64 or to identify healthy or diseased CM from the contractile  profile64. ML algorithms, being able to 
consider the complete set of variables and making an automatic cluster detection in the collected data, allowed 
a significant improvement both in drug screening and  prediction65.

This work compares three different approaches to evaluate contraction kinematics in both ventricular isolated 
single cells and cardioids. The kinematic analyses are performed with the three computer vision methods 
mentioned above: MUSCLEMOTION (MM), CONTRACTIONWAVE (CW) and Video Kinematic Evaluation 
(ViKiE). MM is considered as the benchmark, already extensively  validated36. The main goal of the study is 
to evaluate and compare the applicability of these software programs on single cells and cardioids. Finally, we 
implemented ML algorithms to test the prediction performance of the three training data sets generated from 
each software and their overall sensibility in eventual kinematic changes following the administration of inotropic 
substances.

Methods
Open‑source software algorithms and data analysis
The first selected algorithm was MUSCLEMOTION (MM)36: a  Fiji®-implemented macro for motion tracking. 
The cell contraction is evaluated as the mean pixel intensity of the image resulting from the difference between 
two  frames36. Thus, this tracking approach relies on high quality and sharp contrast of the images to get correct 
measure. The binarization of the images allows the calculation of the maximum displacement over time as the 
difference in intensity between a reference image and the other frames. From the contraction profile, the velocity 
is derived by the first derivation of this profile. According to its nature, MM can report the average kinematics 
of the sample, highly dependable on the quality of image intensity and resolution, with the ability to perform a 
single pixel movement evaluation, as stated in the work of Sala et al.36.

The second software was CONTRACTIONWAVE (CW)39. This algorithm is Python-based with the possibility 
to process multiple videos or sequences of images at once. The tracking software relies on a dense optical flow 
algorithm to quantify the speed of contraction  profiles39. Briefly, the algorithm evaluates the vectorial contraction 
field between successive frames which is corrected for the image dimension and frame-per-second returning the 
speed profile. Furthermore, this software enables the user to save all detected waves in each video, along with 
metrics such as beat duration, time to peak of contraction, and time to peak of relaxation. The software leverages 
the optical flow principle and evaluates the displacement field using all pixels of the  image39.
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The third software was Video Kinematic Evaluation (ViKiE) which is a pipeline consisting of an open-source 
tracking software (Video Spot Tracker, version 08.11, CISMM) and a custom  MATLAB® script used in motion 
 analysis18. The software Video Spot Tracker (VST) can track the sample motion using an appropriate marker 
as in feature-based tracking systems. The marker is hereby defined as appropriate when it correctly detects 
and follows the sample movement. Different kernels are available in the software and the best choice is user 
dependent as well as where the marker is positioned. The tracking output is influenced not only by the kernel of 
the tracker but also by its dimension, which defines how extended the sample-region tracked is. Once the user 
has obtained the optimal setups, the VST software output is pipelined with a  MATLAB® script to process the 
coordinates calculated in the reference system of the image. In the analysis, the origin of the reference system is 
set on the upper-left corner of the first video frame. Thus, the contraction profile is derived from the sequence 
of coordinates acquired with VST, whilst the velocity is retrieved by the first derivation of the marker positions 
corrected by the pixel dimension. As in CW, an updated feature of the ViKiE software allows the user to indicate 
the starting and ending point for each beat to calculate the duration, as well as the time to reach the peak of both 
contraction and relaxation phases on the speed profile.

Once the raw data were acquired during the experiments described in detail below, the post-processing of 
the kinematics was performed with the listed open-source programs and the absolute values of speed profiles 
were compared with the parameters displayed graphically in Fig. 1.

All the videos were recorded with consistent frame rate throughout the experiments and in the same 
conditions. Moreover, it has to be noted that the profiles reported throughout the work will be indicated as 
absolute values to avoid misinterpretation and ensure consistency in data representation of the outputs from 
the three computer vision software. From the absolute of the speed profile, four parameters were calculated 
to assess any difference in the kinematic evaluation. A representative contraction profile and its first derivate 
(named as θ) are displayed in Fig. 1 to highlight the parameters calculated on each different software output. 
The profiles reported were derived from the benchmark MM and normalized. A remark from the authors is the 
slight temporal anticipation of the speed profile due to the approximation of the ratio of increments from which 
the first derivate is calculated. As illustrated in Fig. 1, the parameters over the speed profile (orange trace) were 
selected according to the physiological contraction response (grey profile). The difference between points E and 
A is defined as beat duration and corresponds to the time elapsing between the 5% of the end of contraction 
and the onset defined as the first value different from zero. The difference between points B and A is the time 
required to reach the maximum speed of the contraction phase (t[θc]), as the maximum slope in the ascending 
phase of the contraction profile. The difference between D and C is the maximum speed reached during the 
relaxation phase (t[θr]), namely the maximum slope in the descending phase of the contraction. The distance 
between points D and B is considered the distance between the peaks of contraction and of relaxation (t[θc-r]).

Figure 1.  Example of normalized contraction profile (grey trace) and its first derivative named θ (orange 
trace) obtained with MUSCLEMOTION (benchmark). This represents a qualitative graphical description of the 
kinematic parameters calculated and compared during the experiments. The time between points A and E is 
defined as beat duration. The time between points B and D is the distance between the peaks of contraction and 
relaxation (t[θc−r]). The time between points A and B corresponds to the interval of maximum speed during the 
contraction phase (t[θc]). Lastly, the time between C and D is defined as the interval of maximum speed during 
the relaxation phase (t[θr]).
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In‑silico cardiomyocytes
By kind courtesy of Prof. Sala, a batch of the in-silico cardiomyocyte (CM) videos, used to establish the MM 
method, was employed to perform the first comparison between the three software. Briefly, the videos were 
created using Blender software (v2.77, Stichting Blender Foundation) to simulate cardiomyocyte-shaped objects 
in motion. The in-silico simulations were designed with two different graphical patterns: (i) a grey-based with 
repetitive black bands present along the structure in both longitudinal and perpendicular directions and (ii) a 
diffuse phase contrast to simulate highly repetitive pattern of an in-vitro single  CM36. The videos were analyzed 
with two different time-to-peak values (50% and 200% of the baseline value considered 100%) but with constant 
amplitude of contraction. The software programs were evaluated based on their capability to estimate the correct 
kinematic stated by MM. Moreover, both qualitative and quantitative comparison of the output parameters was 
performed over a sample beat, as described above.

Ventricular cardiomyocytes isolation
Single ventricular cells were derived from 6-month-old mice via Langendorff isolation (Louch et al., 2011). All 
experiments were performed according to the 2010/63/EU Directive and approved by the ethics committee of 
Humanitas Research Hospital, with code 07/2019. Moreover, the animal experimentation was performed in 
accordance with the ARRIVE guidelines, and all the authors complied to the above regulations. Briefly, mice 
were anesthetized with ketamine (100 mg/kg) and xylazine (10 mg/kg) administered via intraperitoneal injection. 
Mice were placed in dorsal recumbency, and after chest opening, the heart was excised. The aorta was cannulated 
with a 21-gauge needle and secured to a Langendorff apparatus. Cardiomyocytes were obtained by enzymatic 
perfusion of the left ventricle with Collagenase Type II (Worthington, LS004177, ≥ 125 units per mg). Hanks 
Balanced Salt Solution (HBSS 1x, Invitrogen 14,170–088) supplemented with magnesium chloride hexahydrate 
(1 mmol/L, Merck 442,611), taurine (30 mmol/L, Merck T0625), D-( +)-glucose (15 mmol/L, Merck G5767), 
magnesium sulfate (1.2 mmol/L, Merck M2643) was made to further process the cells. The digested heart was 
removed from the apparatus and submerged in stop solution (4% Bovine Serum Albumin, BSA, in supplemented 
HBSS), and the left ventricle was dissected from the right ventricle and atria. The tissue was gently minced and 
pipetted to release cells. The cells were filtered through a 100 µm-mesh strainer to avoid contamination with 
undigested tissue fragments. CMs were sedimented by centrifugation at 120xg for 30 s. The cell pellet was washed 
3 times in supplemented HBSS and brought at the correct calcium concentration with gradual additions. Briefly, 
10 µL from the stock solution (10 mmol/L of  CaCl2 in HBSS) were added in two steps, and a last dilution of 10 
µL ultimate the calcium addition, bringing the cells to a final extracellular concentration of 2 µM. The single cell 
dimensions were measured via  Fiji®.

Frequency protocol and single‑cell data acquisition
The cell suspension from the tissue isolation was placed on a heated perfusion chamber at 37 °C equipped with 
silver wires for field stimulation. Cell pacing was generated using the Myopacer Field Stimulator from  IonOptix® 
at 40 V cathodal stimulation. Once settled at the bottom of the chamber, the cells underwent a frequency protocol 
at the following steps: 0.5 Hz, 1 Hz and 2 Hz; 5 s videos of paced cardiomyocytes were acquired by a high-speed 
camera (Basler, acA1300-200 um) at 143 fps, using PylonViewer 5 software (Basler, version 5.1.0.12681 64-bit) 
and an image dimension of 896 pixels × 980 pixels. The hardware used for the acquisition mounted an Intel(R)® 
CoreTM i7-8750H CPU at 2.20 GHz, RAM 16 GB on Windows 11 Pro, version 22H2. The cells that respected 
the entire protocol of pacing were analyzed.

Stem cells culture and 3D cardioid formation
Human embryonic stem cells (RUES) were kindly provided by Dr. Elisa Di Pasquale. The stem cells (passage < 30) 
were seeded on  Matrigel®-coated well plates in Essential-8 medium (Gibco™, #A1517001) and, once reached 
70–80% of confluency within 3 to 4 days, differentiated into cardiomyocytes. The differentiation was performed 
via the PSC Cardiomyocyte Differentiation Kit (Gibco™, #A2921201). Briefly, the protocol induced differentiation 
through sequential refreshment of the three different media in the kit every two days (medium A, B and M). 
Once in medium M, the cells were refreshed every 2 days. On the 26th day of culture, the cells were purified from 
all non-cardiomyocytes by MACS PSC-Derived Cardiomyocyte Isolation Kit (Miltenyi Biotec, #130-110-188) 
as the negative fraction to depletion antibodies. A resuspension of 50.000 cells in DMEM (Gibco™, 11960-044 
supplemented with glutamine 1:1000) completed with 10% FBS (Microgem, S1860-500) and 1% P/S (Euroclone, 
ECB3001D) was seeded into round-bottomed ultra-low attachment 96-well plate. After 4 days, the cells started 
to form small clusters and within a week began to compact into cardioids (Hofbauer et al., 2021). The medium 
was partially refreshed every 3 days. The cardioids dimensions were measured via Fiji®.

Frequency protocol and cardioid data acquisition
At day 50 of culture, the cardioids were singularly picked and transferred into a field stimulation chamber 
(Warner instruments, RC-49MFSH) at 37 °C and 5%  CO2, powered by the stimulus generator STG4004-16 mA 
(Multi Channel Systems MCS GmbH) at 8 V with a step cathodic function, duty cycle 20 ms, and increasing 
frequencies of 0.5 Hz, 0.75 Hz and 1 Hz. From previous experiments, we observed that the maximum pacing 
frequency to keep the 1:1 ratio was 1 Hz, leading to an adaptation of the frequency protocol employed in the 
single cells. Videos of 10 s at 143 fps were recorded using a high-speed camera (Basler, acA1920-155 um), driven 
by PylonViewer software 6 (Basler, version 6.2.0.8205), running on an Intel® CoreTM i5-9400F, CPU at 2.90 GHz, 
RAM 16.0 GB, Windows 11 Home, version 21H2, grabbed image dimension of 1000 pixels × 1000 pixels. For 
each condition, a biological triplicate was assured.
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Caffeine and potassium treatments
To assess software sensibility, two substances were added to the sample medium during the frequency protocol 
described in detail above. Specifically, samples underwent either a controlled increase of extracellular potassium 
for inducing depolarization (KCl, Sigma-Aldrich P9541) or an addition of caffeine (Sigma-Aldrich W222402) 
at 10 mmol/L concentration for inducing inotropic response. These concentrations were assessed to be the most 
effective kinematic-wise based on previous experiments and the  literature66,67. Five minutes after the substances 
administration, videos were recorded and collected for further data analyses, as previously described.

Dataset and supervised machine learning
For each algorithm (MM, CW, and ViKiE), we produced a dataset at each frequency of stimulation in either adult 
single cells or cardioids for a total of 18 datasets. The treatment factor was considered to be either 10 mmol/L 
caffeine or 10 mmol/L KCl. The datasets consisted of the 4 kinematic measures (Fig. 1), two time-dependent 
parameters (the contraction and relaxation peaks magnitude), and the classification label (treated or control). 
Finally, the rows contained the parameters of each beat. We added the contraction and relaxation peaks 
magnitude to the set of parameters to have a larger number of features for the classification. The datasets were 
split into training and testing sets with a ratio of 0.80. In the case of an unbalanced dataset, i.e., composed of an 
unequal amount of data in one class compared to the other (treated vs control), a re-balancing by sampling a 
subset of the overrepresented class was made and merged with the underrepresented set.

Machine learning was applied by using random forest (RF) and support vector machine (SVM), the latter with 
two different kernels (linear and polynomial). RF algorithm was selected because it emerged as the best approach 
in a study classifying contractile  profiles64, whereas the SVM algorithms were selected as commonly used in 
machine learning. Specifically, SVM with linear and polynomial kernels obtained the highest performance scores. 
SVM algorithms are classification tools based on four basic concepts: the separating hyperplane, the maximum-
margin hyperplane, the soft margin, and the kernel function. The first three elements help to select the optimal 
hyperplane separating the data points to be  classified68, while the kernel function modifies the distribution of 
the data on the coordinate system to better separate them. RF algorithm is based on an ensemble of decision 
trees, each working on randomly selected features and a sample of data extracted from the training  set69. All 
the decision trees in the RF perform a classification and, in the end, a majority vote is pooled. The described 
algorithms were employed to classify the datasets described above. The performance metrics considered in this 
work were the true positive rate (TPR) (Eq. (1)) and accuracy (Eq. (2)), which are defined according to the values 
of the confusion matrix, as shown in Table 1.

Ethics approval
The mice adult ventricular cardiomyocytes were obtained in accordance to the protocol code 07/2019, approved 
by the ethical committee Directive of Humanitas Research Hospital and according the 2010/63/EU Directive.

Statistics
Statistical analysis was performed using GraphPad Prism software (version 8.0.2). Once checked the normal 
distribution of the data with the Kolmogorov–Smirnov test, a two-way ANOVA was performed, correlated 
with the Tukey test for multiple comparisons. The treatment was considered as “within”-samples factor while 
the technique as “between”-samples factor. When specified, supplementary two-way ANOVA was performed 
to test the effect of the pacing protocol considering the frequency as “within”-samples factor. In this case, the 
“between”-factor was defined as the software employed during the analysis. Again, the Tukey test was applied 
for multiple comparisons. Biological triplicates were assured, except when specified due to analysis issues. In the 
text and the figure, data are reported as mean ± standard deviation and significance was accepted when p < 0.05.

Results
In‑silico results
The three software programs were first compared with in-silico simulations. The raw data were derived by modi-
fication of the time-to-peak values, namely 50% (Tvar50) and 200% (Tvar200) of baseline. Figure 2 reports the 
performance of the algorithms over the Tvar200 experimental condition. An introductive qualitative comment 
can be made on the profiles reported in the lower-left part of Fig. 2a. Overall, the main difference of the profiles 
resides on the kurtosis of the peaks.

(1)TPR = TP/(TP+ FN)

(2)Accuracy = (TP+ TN)/(TP+ TN+ FP+ FN).

Table 1.  Example of confusion matrix. TP true positive, FP false positive, FN false negative, TN true negative.

True values

Predicted values

 + (1)  − (0)

 + (1) TP FP

 − (0) FN TN
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It is trivial to observe that CW is more dispersed over the peaks in comparison to the other two software 
programs in this condition. The histogram of the same panel confirms that, although CW correctly evaluates the 
beat duration, it poorly performs in estimating the t[θc] as well as t[θr]. In the latter parameter it lines up with 
ViKiE measurement. Observing the quality of the profiles in Fig. 2b, all three software programs converge to 
the same shape, with some fluctuations in the ViKiE profile. This condition, which resembles the physiological 
condition, leads to more consistent evaluations of CW and ViKiE in comparison to MM. The illustrated profiles 
and histogram from the Tvar50 video can be found in Fig. S1.

Single cell kinematic assessment
The single cell dimensions were analyzed in triplicate in Fiji® and resulted in a length of 112.99 ± 5.29 µm. The 
videos acquired were analyzed in parallel with the three methods described above and displayed in Fig. 3. Over-
all, the estimated kinematics were not different using MM or CW. On the other hand, ViKiE estimated longer 
beat duration at 1 Hz of pacing as well as higher times to reach both contraction peaks (t[θc]) at both 1 and 
2 Hz and relaxation peaks (t[θr]) at 1 Hz pacing (Fig. 3 (c,d)). In detail, the time to reach the relaxation peak 
was estimated two-fold higher at 1 Hz of pacing. Conversely, the distance between peaks (t[θc-r]) did not change 
within the methods. Two-way ANOVA was performed to detect the frequency pacing effect, but not displayed 
in Fig. 3 for an easier graphical representation. CW detected a difference in the beat duration between 0.5 Hz 
and 1 Hz (p = 0.0031), whilst MM highlighted a decreasing difference within t[θc-r] at 1 and 2 Hz (p = 0.0392). 
ViKiE disclosed a significant increase in the t[θc] between 0.5 Hz and 1 Hz (p = 0.0002) as well as an indicative 
decrease between the time to reach the peak of contraction (t[θc]) among 1 Hz and 2 Hz (p = 0.0138). Lastly, we 
observed a significant difference between the t[θr] in the ViKiE evaluation between 0.5 Hz and 1 Hz (p < 0.0001) 
and 1 Hz and 2 Hz (p < 0.0001).

 As we observed that the three open-source software programs were able to reliably estimate the cell 
movement, we further tested their sensibility after the administration of KCl and caffeine. In Fig. 4, the differences 
in time between the untreated and treated conditions are reported. Regarding the hyperkalemia effects (Fig. 4, 
vertical-themed bars), the three software programs agreed overall on the effects of the treatment, except for 
the t[θc] at 1 Hz where both CW and ViKiE estimated a shortening in time of contraction (− 3.60 ms for 
CW, − 30.98 ms for ViKiE and 8.73 ms for MM) (Fig. 4b). Additionally, ViKiE detected a shortening in the beat 
duration at 2 Hz, in contrast with CW and MM measures (− 44.57 ms for ViKiE versus 30.41 ms for CW and 
61.60 ms for MM) (Fig. 4c).

The caffeine effects (Fig. 4, oblique-themed bars) were detected with consistency between the three methods 
with only few exceptions. In detail, the t[θc] at 1 Hz and 2 Hz showed an opposite trend for ViKiE (− 24 ms 
vs 52.82 ms for CW and 33.51 ms for MM), as well as the beat duration at 2 Hz (− 27.62 ms for ViKiE versus 
45.11 ms for CW and 46.81 ms for MM). As mentioned, despite few differences possibly due to different track-
ing principles, the three methods evaluated the same effects. To further highlight differences, we calculated and 
compared the ratios between the mean values at 1 and 2 Hz over 0.5 Hz for each tracking method and observed 
that ViKiE denoted higher values compared to the other two software programs. In detail, the beat duration at 
1 Hz/0.5 Hz (Fig. 4a) resulted in a ratio greater than the unit, in contrast to MM and CW (1.06 vs 0.94 and 0.73, 
respectively). Moreover, when measuring the time to maximum contraction speed, ViKiE had the same trend 
as the other two software programs but with higher ratios, thus confirming major sensitivity (1 Hz/0.5 Hz: 1.53 
vs 1.19 and 1.10; 2 Hz/0.5 Hz: 1.19 vs 1.11 and 1.08). Lastly, considering the t[θr], ViKiE was in accordance with 
MM but detected a ratio of 2.26 compared to 1.04. In summary, in untreated cells, the three methods had a good 

Figure 2.  Comparison of the three open-source software programs with in-silico cardiomyocytes with 200% 
time-to-peak. (a) The first experiment with “grey” patterned cardiomyocyte. The plot on the left side of the 
panel represents the speed profile evaluated by the three software programs. The grey profile is the benchmark 
considered in this study (MUSCLEMOTION), the cyan profile derives from CONTRACTIONWAVE 
evaluation, and the orange profile is the ViKiE estimation. The histograms on the right side represent the four 
parameters extracted by the profiles and measured by the three methodologies. (b) The second experiment 
with “fog” patterned cardiomyocyte. As in panel (a), the profiles and histograms of the software evaluations are 
reported to address the ground-truth comparison.
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temporal correspondence when estimating the peak-to-peak distance (t[θc-r]) despite the frequencies applied 
to the cells.

3D structure results
The cardioid dimensions were analyzed in triplicates in Fiji® and resulted in a diameter of 454.13 ± 16.91 µm. 
As mentioned, the maximum pacing frequency to keep the 1:1 ratio was 1 Hz for the cardioids, therefore we 
adopted the same kinematic analysis performed on single cells but in following pacing steps: 0.5 Hz, 0.75 Hz and 
1 Hz. The results reported in Fig. 5 showed no significant differences between the three software programs at the 
increasing frequency of stimulation except for t[θc-r], where we observed a nearly two-fold difference between 
CW and the other two (Fig. 5b). In Fig. 5, the frequency response highlighted an overall coherent estimation of 
the parameters throughout the protocol and within methods.

Then, we assessed the sensitivity of the three methods after the administration of caffeine and KCl as previ-
ously performed on cardioids (Fig. 6, vertical-themed histograms). The results are reported as the difference in 
time between the untreated condition and the treatment. Concerning the caffeine effect (Fig. 6, oblique-themed 
histograms), the same trend can be appreciated within the software even if a minor but not significant differ-
ences can be observed (Fig. 6a). In particular, ViKiE and MM showed a good temporal correlation, estimating 
all parameters within the same time range. When the treatment switched to KCl (Fig. 6, vertical-themed histo-
grams), ViKiE detected a prolongation of the four kinematic parameters at 0.5 Hz; for instance, beat duration 
estimated of 62.22 ms versus − 133.1 ms and − 49.39 ms from CW and MM respectively (Fig. 6a).

Both MM and ViKiE managed to discern different kinematic effects of the two treatments in all the 
parameters. The time of the relaxation peak was the only parameter without statistical differences. To further 
investigate the difference in sensitivity between the three software programs, the 0.75 Hz/0.5 Hz and 1 Hz/0.5 Hz 
ratios were calculated as previously described in single cells. Interestingly, MM and ViKiE estimated consistent 
values in these ratios for both beat duration and t[θc-r]. When analyzing differences in t[θc], ViKiE discriminated 
a major reduction in the 1 Hz/0.5 Hz ratio (0.70 vs 0.97 of MM), whilst the 0.75 Hz/0.5 Hz ratio was almost 
comparable between the two software programs (0.89 of ViKiE vs 0.80 of MM). Lastly, MM showed higher 
sensitivity when discriminating the t[θr] ratio values compared to both CW and ViKiE (0.75 Hz/0.5 Hz: 0.87 vs 
0.97 of CW and 0.88 of ViKiE; 1 Hz/0.5 Hz: 0.86 vs 0.98 of CW and 1.02 of ViKiE). Concerning CW sensitivity, 

Figure 3.  The frequency response of single cells was measured with the three open-source software programs. 
Grey: MM, Cyan: CW, Orange: ViKiE. (a) Beat duration of the untreated cells, for each algorithm. X-axis: 
frequency of stimulation in Hz  (s−1). Y-axis: time occurred in milliseconds (ms) (b) The estimation of the time 
occurring between the double speed peaks. (c) The maximum speed reached during the contraction phase is 
reported in this panel. (d) The maximum speed reached during the relaxation phase t[θr]. Two-way ANOVA 
was performed with Tukey statistical hypothesis for multiple comparisons, with significance levels defined 
*p < 0.05, **p < 0.01, ***p < 0.001 (n = 3).
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its estimations were mostly in line with MM except for t[θc-r] which displayed high ratios (0.75 Hz/0.5 Hz: 1.54 
and 1 Hz/0.5 Hz:1.42) compared to the shorter values of both MM and ViKiE (ratios smaller than 1).

Machine learning results
ML was applied on our dataset to further assess the sensitivity of the three software programs. For this purpose, 
RF and SVM were used to classify the beats of both adult single ventricular cardiomyocytes and cardioids after 
treatment with caffeine and KCl. The accuracy and TPR of both RF and SVM applied to the single cells treated 
with 10 mmol/L caffeine are calculated and reported on radar plots in Fig. 7. SVM, with both linear and poly-
nomial kernels, and RF performed well with both CW and MM training datasets (TPR and accuracy > 90%). 
On the contrary, ViKiE underperformed with SVM (TPR and accuracy < 60%) but not with RF (accuracy and 
TPR comprised between 69 and 86%). In Fig. 8, it is possible to observe the performance metrics radar plots of 
the machine-learning techniques applied to the cardioids treated with 10 mmol/L caffeine. All the classification 
models performed well with MM compared to CW and ViKiE (TPR and accuracy > 77%). SVM with polynomial 
kernel was generally underperforming, especially when trained with CW and ViKiE data. Interestingly, the classi-
fication model performances for these two software programs were comparable in cardioids. In single cells treated 
with 10 mmol/L KCl (Fig. 8a,b), RF performed well with MM (TPR > 86%, accuracy > 87%) and CW (TPR > 86%, 
accuracy > 83%) for all stimulation frequencies. On the contrary, SVM underperformed with ViKiE (TPR and 
accuracy < 41%). In cardioids treated with 10 mmol/L KCl (Fig. 8 c,d), the ML algorithms classified MM better 
than the other software programs (TPR and accuracy > 66%), whereas they showed the worst performance with 
ViKiE. In particular, SVM showed the worst performance with ViKiE (TPR and accuracy < 60%).
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Figure 4.  Kinematic analysis of single cells treated with caffeine and KCl, normalized for the control mean 
value. Vertical-themed bars, 10 mmol/L KCl effect. Oblique-themed bars, 10 mmol/L caffeine-treated cells. 
X-axis: differences of mean values of the parameters. Grey: MM, Cyan: CW, Orange: ViKiE. (a) The four 
parameters measured at 0.5 Hz pacing frequency. (b) Parameters assessed at 1 Hz pacing. (c) The same 
measurements at 2 Hz. Two-way ANOVA was performed with Tukey statistical hypothesis for multiple 
comparison, significance levels defined *p < 0.05, **p < 0.01, ***p < 0.001 (n = 3).



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1782  | https://doi.org/10.1038/s41598-024-52081-9

www.nature.com/scientificreports/

To summarize, we observed that at higher frequencies (2 Hz for single cells and 1 Hz for cardioids), RF 
showed the best performance in both treatments (accuracy > 83%). Overall, ML algorithms better classified MM 
compared to the other two software programs.

Discussion
The necessity of evaluating cell movement in a reliable and efficient way has never been so compelling to estimate 
and discriminate different kinematic properties, especially when it comes to cardiac research  applications35. 
Well-established systems, such as  IonOptix®, do not allow scalability to 3D samples yet adding this limitation 
to the high economic cost. In this work, we illustrated and compared several open-source methods found in 
literature which rely on different algorithms for tracking  kinematics18,36,39. The three software programs base their 
evaluation on different hypotheses, namely pixel intensity track changes (MM), optical flow analysis (CW), and 
blob analysis (ViKiE). In this study, in-silico preliminary comparison in terms of absolute speed profiles and by 
four different parameters using two different in-vitro models was performed, as illustrated in Fig. 1.

The in-silico experiment allowed a preliminary comparison of the three software programs over a ground truth 
dataset and with known  output36. The videos were considered as if they were used to establish and validate the 
linearity of MM output, thus the authors have considered this analysis as a logical starting point. Comparing the 
results reported in Fig. 2a,b, it is clear how CW showed a more stable performance when analyzing periodically 
patterned samples, as in isolated single cardiomyocytes. ViKiE, on the other hand, once the trackers were 
positioned over representative pixel regions, allowed to estimate local movement reliably and with stable output.

The results confirmed the possibility to compare these three software programs over temporal-derived 
characteristics and assuming MM as a benchmark. Following these results, the work moved towards in-vitro 
models to assess the software in terms of flexibility.

The first model was the single ventricular cardiomyocytes isolated from adult mice which is the most used 
in in-vitro application. We aimed to determine whether the three software programs were temporally detecting 
the same phenomena and converging on the same paced kinematics. Our results showed that the three software 
programs had a good temporal correlation when estimating the time to the peak of contraction and relaxation 
throughout the frequency protocol (cf. Fig. 3b). Conversely, differences emerged in the other three kinematic 
measurements (cf. Fig. 3a,c,d) suggesting that ViKiE tracking method might have higher sensitivity. Indeed, 
especially when computing the t[θc] and t[θr], ViKiE showed higher sensitivity in estimating untreated single cells 
kinematics. The reason may be attributed to the local kinematic evaluation rather than the global computation 

Figure 5.  Frequency response of cardioids measured with the three open-source software programs. Grey: 
MM, Cyan: CW, Orange: ViKiE. X-axis: the frequency of stimulation in Hz  (s−1). Y-axis: time occurred in 
milliseconds. (a) Beat duration of the untreated cardioids for each algorithm. (b) The estimation of the time 
occurring between the speed peaks at both contraction and relaxation. (c) The maximum speed reached during 
the contraction phase. (d) The maximum speed reached during the relaxation phase. Two-way ANOVA was 
performed with Tukey statistical hypothesis for multiple comparisons, with significance levels defined *p < 0.05, 
**p < 0.01, ***p < 0.001 (n = 3).
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performed by the other two software programs. However, ViKiE-derived kinematics were a reliable measure 
as demonstrated by the overall trend compared to the other two methods. The underlined difference was more 
prominent when the samples were treated with KCl and caffeine (Fig. 4). This is especially true when computing 
the beat duration at 2 Hz and the t[θc] at 1 Hz and 2 Hz, where ViKiE discriminates the different effects of the 
treatments and in contrast to both MM and CW measurements (Fig. 4b third panel; Fig. 4c, first and third 
panels). Overall, our results demonstrated the reproducibility and the temporal correlation between these three 
tracking algorithms with a few exceptions which will be further discussed.

Cardioids were the second in-vitro model employed in this work. This choice was mainly guided by its grow-
ing interest for the high-throughput, standardized  output50–52,70,71. The same analysis pipeline applied to the 
single cells was adopted to the cardioids, stimulating the samples at 0.5, 0.75 and 1 Hz. From an analytical point 
of view, CW failed at processing cardioids, even after an image crop was applied to decrease the noise, making 
it difficult for the user to produce reliable data. Nonetheless, when analyzing the frequency-paced samples, the 
three software programs agreed on both trend and time scale of the kinematic phenomenon, with the exception 
for t[θc-r] at 0.5 Hz (Fig. 5b). When calculating the ratios of the parameters at 0.75 Hz/0.5 Hz and 1 Hz/0.5 Hz, 
MM showed higher sensitivity when discriminating the t[θr] changes. On the other hand, CW sensitivity was 
aligned with MM except for t[θc-r]. Lastly, MM and ViKiE estimated consistent values in the beat duration ratio 
as well as the t[θc-r]. The authors speculate that the underperformance of CW over this type of sample may be 
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11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1782  | https://doi.org/10.1038/s41598-024-52081-9

www.nature.com/scientificreports/

connected to the performance observed in Fig. 2a. In fact, the spheroid is a highly contrasted object over the 
background, as the in-silico cardiomyocyte of the first dataset (Fig. 2a).

A separate discussion must be made about the treated samples. Once again, the kinematics at 0.5 Hz suggested 
a higher sensitivity for ViKiE than the other two software programs (Fig. 6a, from the first to the fourth panel), 
whilst at both 0.75 and 1 Hz ViKiE and MM display the same trend. Specifically, MM analysis reported two 
opposite effects of 10 mmol/L KCl for both beat duration (Fig. 6b, first panel) and t[θc] (Fig. 6b,c third panels), 
which may suggest a satisfactory sensitivity for this software in detecting differences. On the other hand, ViKiE 
outperformed in discriminating the t[θc-r] at 0.5 Hz pacing. The authors speculate that the reason of such varied 
outcomes of the contractility parameters might lie in the intrinsic characteristics of the tracking software. Overall, 
when treating the sample, the local property (detected by Vi.Ki.E.) might be highlighting a different, and even 
opposite, trend compared to the mean behaviour evaluated (MUSCLEMOTION and CONTRACTIONWAVE). 
This intrinsic difference might be less marked with constructs as cardioids (Fig. 6) compared to the single cells 
(Fig. 7). The latter are heavily more sensitive compared to 3D construct to environmental triggers, as frequency 
and inotropic substances, by trivial reason. Moreover, to the best of our knowledge, this constitutes one of the 
first kinematic studies on treated cardioids, as well as the first application of CW system on this in-vitro model.

Concerning the ML analysis, RF outperformed the SVM algorithms, since it did not classify the data points 
through a limited hyperplane. The algorithm used uncorrelated features, hence, there was an automatic selection 
of the most relevant ones. SVM was not able to filter the correlated features that could influence the classification 
negatively. Overall, MM produced parameter-wise more robust data than the other two techniques. Thus, the 
classification of this software was higher in accuracy and TPR independently from the stimulation frequency. 
On the other hand, the ML algorithms underperformed while trained with ViKiE dataset due to more sensitive 
and thus less robust parameters. CW was a good compromise between parameter-wise robustness and machine 
learning performance.

Hereby is reported a summary table of the main characteristics of the software used on two of the most used 
in-vitro standards (Table 2). This work aimed to determine the reliability of the tracking methods compromising 
between the time effort and computational robustness. One of the main results of this study was to demonstrate 
that not all the methods are robust when applied to different models. This evidence constitutes a challenge for 

Figure 7.  Comparison of performance metrics (Accuracy and TPR) using three different machine learning 
(ML) algorithms. (a) and (b) ML was applied on single beat parameters from three motion tracking software 
(MUSCLEMOTION, CONTRACTIONWAVE and ViKiE) in single cells, at the following stimulation 
frequencies (0.5 Hz, 1 Hz, 2 Hz), and after 10 mmol/L caffeine administration. (c) and (d): same as (a) and (b) 
but for cardiac spheroids at the following stimulation frequencies (0.5 Hz, 0.75 Hz, 1 Hz). TPR true positive 
rate. Grey: support vector machine (linear kernel), Cyan: support vector machine (polynomial kernel), Orange: 
random forest.



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1782  | https://doi.org/10.1038/s41598-024-52081-9

www.nature.com/scientificreports/

developers to create an all-in-one algorithm that must satisfy the most general experimental conditions and at 
the same time be reliable and user-friendly. These listed characteristics are reported in Table 2, hoping to serve 
as a guideline for researchers approaching cell kinematics tracking.

In conclusion, the present study reviewed three open-source software programs and tested their performances 
in reliability and scalability. Even though the algorithms based their kinematic evaluations on a different physical 
basis, we were able to temporally compare them and appreciate their consistency in both our in-vitro models. 
Overall, ViKiE tends to be more sensitive because of the local, rather than global, kinematic measure, and may 

Figure 8.  Comparison of performance metrics (Accuracy and TPR) using three different machine learning 
(ML) algorithms. (a) and (b) ML was applied on single beat parameters from three motion tracking software 
(MUSCLEMOTION, CONTRACTIONWAVE and ViKiE) in single cells, at the following stimulation 
frequencies (0.5 Hz, 1 Hz, 2 Hz), and after 10 mmol/L KCl administration. (c) and (d): same as (a) and (b) but 
for cardiac spheroids at the following stimulation frequencies (0.5 Hz, 0.75 Hz, 1 Hz). TPR true positive rate. 
Grey: support vector machine (linear kernel), Cyan: support vector machine (polynomial kernel), Orange: 
random forest.

Table 2.  Summary of the software characteristics. The input files extension refers to the format read by the 
program/pipeline. The importance of having the original code allows the user to customize the program 
according to experimental necessities. The user-friendliness factor is essential for an intuitive interface and 
related documentation might improve user experience. When analyzing memory-consuming video, the time 
required to process the data may depend on the type of algorithm performed. The ability of the software to 
correctly detect movement from different biological samples is essential to determine its scalability. Through 
machine learning-aided analysis, we have demonstrated the overall sensitivity and robustness of the three 
methods with MUSCLEMOTION outperforming the other software programs. Lastly, the type and units 
of measures computed by the software programs, whether they calculate the average or local movement as 
well as if the output is displayed in either arbitrary or physical units. Predictive accuracy of the machine 
learning performed on the dataset derived from the three software is reported to complete this comprehensive 
comparison.

MUSCLEMOTION CONTRACTIONWAVE ViKiE

Input files extension .tiff, .png .avi, .tiff, .png .avi, .tiff, .png

Code repository Yes  (Fiji®) Yes (Python) Yes, on request (MATLAB®)

User-friendly Yes Yes Yes, requires basic MATLAB 
knowledge

Time for analysis Medium High, but parallelized analysis High

Scalability Yes No Yes

Sensitivity High in cardioids Medium High in cardioids and single cells

Robustness High Medium Depending on motion tracker 
software used

Units of measures Average movement in arbitrary units (a.u.) Average movement (μm/s) Local movement (μm/s)

Predictive accuracy (random forest) Accuracy > 87% Accuracy > 83% Accuracy > 79%
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constitute an advantage when the biological sample does not have isovolumetric contraction. On the other hand, 
both MM and CW showed a temporal correlation, having the advantage of a global evaluation while executing 
a timesaving analysis.

An improvement in the study could be the integration and monitoring of the wash-out phase of the substances 
through a microfluidic system. The ability to measure not only the speed of contraction but also the contraction 
force could provide more insightful data. Furthermore, as ViKiE is based on different software pipeline, an 
improvement could be the use of another tracking method different from Video Spot Tracker to guarantee a 
more robust dataset and thus a better classification performance. Of course, for the ML training, an increased 
number of data would be beneficial for the correct prediction outcome.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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