2,587 research outputs found

    Cinética de imbibición e isotermas de adsorción de humedad de la semilla de jamaica (Hibiscus sabdariffa L.)

    Get PDF
    La jamaica es un arbusto que se cultiva para comercializar el cáliz de sus flores, pero como subproducto se obtienen las semillas, que por su valor nutritivo y alto rendimiento representan un potencial económico considerable. El objetivo de este trabajo fue describir la cinética de imbibición y las isotermas de adsorción de humedad a 25, 35 y 45ºC en tres variedades cultivadas en México ("Criolla", "China" y "Sudán"). Los resultados mostraron que el proceso de imbibición describe una curva que se ajusta al modelo de Weibull, con coeficientes α de 12.99, 8.81 y 2.21 horas y β de 0.83, 1.70 y 0.72 para las variedades Criolla, China y Sudán, respectivamente. Los modelos de GAB, y de Chung-Pfost describieron adecuadamente las isotermas de adsorción. La humedad de la capa monomolecular (coeficiente a del modelo de GAB) resultó entre 3.97 y 5.71% b.s., lo cual representa una actividad de agua entre 0.1 y 0.30. Los calores isostéricos totales de adsorción obtenidos en el intervalo de humedades de equilibrio de 6 a 22% b.s., oscilaron entre 52.85 y 42.90 .90 kJmּol-1, 60.99 y 43.41 kJmּol-1 y 51.23 y 43.20 kJmּol-1para las variedades Criolla, China y Sudán, respectivamente. A humedades de equilibrio iguales o superiores a 12 % b.s., el calor isostérico fue similar a la entalpía de vaporización del agua, pero a humedades inferiores a 6% b.s., éste alcanzó los valores más elevados

    An Observer-based Longitudinal Control of Car-like Vehicles Platoon Navigating in an Urban Environment

    Get PDF
    International audienceIn this paper, we study longitudinal motion controlof car-like vehicles platoon navigating in an urban environmentwith minimum communication links. To achieve a higher trafficflow, a constant-spacing policy between successive vehicles iscommonly used but this is at a cost of an increased number ofcommunication links as any vehicle information must broadcastto all its followers. Therefore, we propose a distributed observer-based control law that depends both on communicated andmeasured information. Our formulation allows designing thecontrol law directly in the curvilinear coordinates. Internal andstring stability analysis are conducted. We provide simulationresults, through dynamic vehicular mobility simulator, to illus-trate the feasibility of the proposed approach and corroborate our theoretical findings

    Comparison of lateral controllers for autonomous vehicle : experimental results

    Get PDF
    International audienceA good path tracker is one of the keys for the successful development of a self-driving car. In the literature, there exists a wide variety of techniques, some complex and some simple and yet effective in particular scenarios. The choice of the path tracker influences the performance in terms of precision, stability and passenger comfort. This paper addresses the lateral control of a self-driving car in an urban environment, where speed is not high but variations in velocity and curvature are frequent. In choosing a lateral controller, simplicity, efficiency and robustness are considered as the main criteria. In this paper, three classical techniques used for controlling the lateral error are analyzed: pure pursuit, Stanley and a simplified kinematic steering control. Additionally , a novel kinematic controller based on the lateral speed is proposed. A home-made realistic simulation environment has been developed to allow rapid testing of the control laws. The relevance of this work has been demonstrated for all controllers through realistic simulations and experiments. The experimental site is the campus of Ecole Centrale de Nantes, where all control laws have been compared along the same path. A longer path, involving a portion of the ring road of Nantes (France) has been simulated. It involves speeds up to 90 km/h, allowing to extrapolate the comparison results to higher velocities

    Developmental Plasticity in Response to Embryo Cryopreservation: The Importance of the Vitrification Device in Rabbits

    Full text link
    [EN] This study was conducted to demonstrate how embryo manipulation techniques incur phenotypic changes throughout life. This study reports the first evidence demonstrating that the vitrification device used is not a trivial decision, providing valuable information about how the cooling-warming rates during vitrification can be partly responsible of the postnatal phenotypic variations. In this study, we evaluated the effect of embryo vitrification using two different devices on adulthood phenotype in rabbits. In vitro development, prenatal embryo survival, body weight, growth performance, haematological and biochemical peripheral blood analysis, reproductive performance, and lactation performance traits were compared between the experimental groups. They derived from naturally-conceived embryos (NC), fresh-transferred embryos (FT), vitrified-transferred embryos using mini-straw (VTs), or vitrified-transferred embryos using Cryotop (VTc). Straw-vitrified embryos exhibited lower in vitro developmental rates and in vivo survival rates following embryo transfer compared to its Cryotop-vitrified counterparts. Moreover, the VTs group exhibited higher foetal losses than VTc, FT, and NC groups. Independently of the vitrification device, vitrified-transferred (VT) offspring showed a skewed sex ratio in favour of males, and an increased birth bodyweight. In contrast, postnatal daily growth was diminished in all ART (i.e., FT and VT) animals. In adulthood, significant differences in body weight between all groups was founded-all ART progenies weighed less than NC animals and, within ART, VT animals weighed less than FT. For VT groups, weight at adulthood was higher for the VTs group compared with the VTc group. Peripheral blood parameters ranged between common values. Moreover, no differences were found in the fertility rates between experimental groups. Furthermore, similar pregnancy rates, litter sizes, and the number of liveborns were observed, regardless of the experimental group. However, decreased milk yield occurred for VTc and FT animals compared to VTs and NC animals. A similar trend was observed for the milk composition of dry matter and fat. Concordantly, reduced body weight was found for suckling kits in the VTc and FT groups compared to VTs and NC animals. Our findings reveal that developmental changes after the embryo vitrification procedure could be associated with an exhibition of the embryonic developmental plasticity. Moreover, to our best knowledge, this study reports the first evidence demonstrating that the vitrification device used is not a trivial decision, providing valuable information about how the cooling-warming rates during vitrification can be partly responsible of the postnatal phenotypic variations.Funding from the Ministry of Economy, Industry and Competitiveness (research project: AGL2014-53405-C2-1-P and AGL2017-85162-C2-1-R) is acknowledged. X.G.-D. was supported by a research grant from the Ministry of Economy, Industry and Competitiveness (BES-2015-072429). English text version was revised by N. Macowan English Language Service.Garcia-Dominguez, X.; Vicente Antón, JS.; Marco-Jiménez, F. (2020). Developmental Plasticity in Response to Embryo Cryopreservation: The Importance of the Vitrification Device in Rabbits. Animals. 10(5):1-17. https://doi.org/10.3390/ani10050804S117105Ng, K. Y. B., Mingels, R., Morgan, H., Macklon, N., & Cheong, Y. (2017). In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: a systematic review. Human Reproduction Update, 24(1), 15-34. doi:10.1093/humupd/dmx028García-Martínez, S., Sánchez Hurtado, M. A., Gutiérrez, H., Sánchez Margallo, F. M., Romar, R., Latorre, R., … López Albors, O. (2018). Mimicking physiological O2 tension in the female reproductive tract improves assisted reproduction outcomes in pig. MHR: Basic science of reproductive medicine, 24(5), 260-270. doi:10.1093/molehr/gay008Roseboom, T. J. (2018). Developmental plasticity and its relevance to assisted human reproduction. Human Reproduction, 33(4), 546-552. doi:10.1093/humrep/dey034Vrooman, L. A., & Bartolomei, M. S. (2017). Can assisted reproductive technologies cause adult-onset disease? Evidence from human and mouse. Reproductive Toxicology, 68, 72-84. doi:10.1016/j.reprotox.2016.07.015Servick, K. (2014). Unsettled questions trail IVF’s success. Science, 345(6198), 744-746. doi:10.1126/science.345.6198.744Skelly, A., Dettori, J., & Brodt, E. (2012). Assessing bias: the importance of considering confounding. Evidence-Based Spine-Care Journal, 3(01), 9-12. doi:10.1055/s-0031-1298595Chen, M., & Heilbronn, L. K. (2017). The health outcomes of human offspring conceived by assisted reproductive technologies (ART). Journal of Developmental Origins of Health and Disease, 8(4), 388-402. doi:10.1017/s2040174417000228Halliday, J., Lewis, S., Kennedy, J., Burgner, D. P., Juonala, M., Hammarberg, K., … McLachlan, R. (2019). Health of adults aged 22 to 35 years conceived by assisted reproductive technology. Fertility and Sterility, 112(1), 130-139. doi:10.1016/j.fertnstert.2019.03.001Juonala, M., Lewis, S., McLachlan, R., Hammarberg, K., Kennedy, J., Saffery, R., … Halliday, J. (2019). American Heart Association ideal cardiovascular health score and subclinical atherosclerosis in 22–35-year-old adults conceived with and without assisted reproductive technologies. Human Reproduction, 35(1), 232-239. doi:10.1093/humrep/dez240Duranthon, V., & Chavatte-Palmer, P. (2018). Long term effects of ART: What do animals tell us? Molecular Reproduction and Development, 85(4), 348-368. doi:10.1002/mrd.22970Ramos‐Ibeas, P., Heras, S., Gómez‐Redondo, I., Planells, B., Fernández‐González, R., Pericuesta, E., … Gutiérrez‐Adán, A. (2019). Embryo responses to stress induced by assisted reproductive technologies. Molecular Reproduction and Development, 86(10), 1292-1306. doi:10.1002/mrd.23119Feuer, S. K., & Rinaudo, P. F. (2017). Physiological, metabolic and transcriptional postnatal phenotypes ofin vitrofertilization (IVF) in the mouse. Journal of Developmental Origins of Health and Disease, 8(4), 403-410. doi:10.1017/s204017441700023xDe Geyter, C., Calhaz-Jorge, C., Kupka, M. S., Wyns, C., Mocanu, E., Motrenko, T., … Goossens, V. (2020). ART in Europe, 2015: results generated from European registries by ESHRE†. Human Reproduction Open, 2020(1). doi:10.1093/hropen/hoz038Sparks, A. (2015). Human Embryo Cryopreservation—Methods, Timing, and other Considerations for Optimizing an Embryo Cryopreservation Program. Seminars in Reproductive Medicine, 33(02), 128-144. doi:10.1055/s-0035-1546826Hargreave, M., Jensen, A., Hansen, M. K., Dehlendorff, C., Winther, J. F., Schmiegelow, K., & Kjær, S. K. (2019). Association Between Fertility Treatment and Cancer Risk in Children. JAMA, 322(22), 2203. doi:10.1001/jama.2019.18037Norrman, E., Petzold, M., Clausen, T. D., Henningsen, A.-K., Opdahl, S., Pinborg, A., … Wennerholm, U.-B. (2020). Type 1 diabetes in children born after assisted reproductive technology: a register-based national cohort study. Human Reproduction, 35(1), 221-231. doi:10.1093/humrep/dez227Rienzi, L., Gracia, C., Maggiulli, R., LaBarbera, A. R., Kaser, D. J., Ubaldi, F. M., … Racowsky, C. (2016). Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Human Reproduction Update. doi:10.1093/humupd/dmw038Arav, A. (2014). Cryopreservation of oocytes and embryos. Theriogenology, 81(1), 96-102. doi:10.1016/j.theriogenology.2013.09.011Saragusty, J., & Arav, A. (2011). Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. REPRODUCTION, 141(1), 1-19. doi:10.1530/rep-10-0236Vicente, J. S., & García-Ximénez, F. (1994). Osmotic and cryoprotective effects of a mixture of DMSO and ethylene glycol on rabbit morulae. Theriogenology, 42(7), 1205-1215. doi:10.1016/0093-691x(94)90869-9Vicente, J.-S., Viudes-de-Castro, M.-P., & García, M.-L. (1999). In vivo survival rate of rabbit morulae after vitrification in a medium without serum protein. Reproduction Nutrition Development, 39(5-6), 657-662. doi:10.1051/rnd:19990511Garcia-Dominguez, X., Marco-Jimenez, F., Viudes-de-Castro, M. P., & Vicente, J. S. (2019). Minimally Invasive Embryo Transfer and Embryo Vitrification at the Optimal Embryo Stage in Rabbit Model. Journal of Visualized Experiments, (147). doi:10.3791/58055Besenfelder, U., Strouhal, C., & Brem, G. (1998). A Method for Endoscopic Embryo Collection and Transfer in the Rabbit. Journal of Veterinary Medicine Series A, 45(1-10), 577-579. doi:10.1111/j.1439-0442.1998.tb00861.xBlasco, A., & Gómez, E. (1993). A note on growth curves of rabbit lines selected on growth rate or litter size. Animal Science, 57(2), 332-334. doi:10.1017/s000335610000698xMaertens L., Lebas F., & Szendro ZS. (2010). Rabbit milk: A review of quantity, quality and non-dietary affecting factors. World Rabbit Science, 14(4). doi:10.4995/wrs.2006.565Novakovic, B., Lewis, S., Halliday, J., Kennedy, J., Burgner, D. P., Czajko, A., … Saffery, R. (2019). Assisted reproductive technologies are associated with limited epigenetic variation at birth that largely resolves by adulthood. Nature Communications, 10(1). doi:10.1038/s41467-019-11929-9Seki, S., & Mazur, P. (2009). The dominance of warming rate over cooling rate in the survival of mouse oocytes subjected to a vitrification procedure. Cryobiology, 59(1), 75-82. doi:10.1016/j.cryobiol.2009.04.012Mazur, P., & Seki, S. (2011). Survival of mouse oocytes after being cooled in a vitrification solution to −196°C at 95° to 70,000°C/min and warmed at 610° to 118,000°C/min: A new paradigm for cryopreservation by vitrification. Cryobiology, 62(1), 1-7. doi:10.1016/j.cryobiol.2010.10.159Zhang, X., Catalano, P. N., Gurkan, U. A., Khimji, I., & Demirci, U. (2011). Emerging technologies in medical applications of minimum volume vitrification. Nanomedicine, 6(6), 1115-1129. doi:10.2217/nnm.11.71Marco-Jiménez, F., Lavara, R., Jiménez-Trigos, E., & Vicente, J. S. (2013). In vivo development of vitrified rabbit embryos: Effects of vitrification device, recipient genotype, and asynchrony. Theriogenology, 79(7), 1124-1129. doi:10.1016/j.theriogenology.2013.02.008Saenz-de-Juano, M. D., Marco-Jimenez, F., Schmaltz-Panneau, B., Jimenez-Trigos, E., Viudes-de-Castro, M. P., Peñaranda, D. S., … Vicente, J. S. (2014). Vitrification alters rabbit foetal placenta at transcriptomic and proteomic level. REPRODUCTION, 147(6), 789-801. doi:10.1530/rep-14-0019Riesche, L., & Bartolomei, M. (2018). Assisted Reproductive Technologies and the Placenta: Clinical, Morphological, and Molecular Outcomes. Seminars in Reproductive Medicine, 36(03/04), 240-248. doi:10.1055/s-0038-1676640Tan, K., Wang, Z., Zhang, Z., An, L., & Tian, J. (2016). IVF affects embryonic development in a sex-biased manner in mice. REPRODUCTION, 151(4), 443-453. doi:10.1530/rep-15-0588Tan, K., An, L., Miao, K., Ren, L., Hou, Z., Tao, L., … Tian, J. (2016). Impaired imprinted X chromosome inactivation is responsible for the skewed sex ratio following in vitro fertilization. Proceedings of the National Academy of Sciences, 113(12), 3197-3202. doi:10.1073/pnas.1523538113Maalouf, W. E., Mincheva, M. N., Campbell, B. K., & Hardy, I. C. W. (2014). Effects of assisted reproductive technologies on human sex ratio at birth. Fertility and Sterility, 101(5), 1321-1325. doi:10.1016/j.fertnstert.2014.01.041Supramaniam, P. R., Mittal, M., Ohuma, E. O., Lim, L. N., McVeigh, E., Granne, I., & Becker, C. M. (2019). Secondary sex ratio in assisted reproduction: an analysis of 1 376 454 treatment cycles performed in the UK. Human Reproduction Open, 2019(4). doi:10.1093/hropen/hoz020Lin, P.-Y., Huang, F.-J., Kung, F.-T., Wang, L.-J., Chang, S. Y., & Lan, K.-C. (2009). Comparison of the offspring sex ratio between fresh and vitrification-thawed blastocyst transfer. Fertility and Sterility, 92(5), 1764-1766. doi:10.1016/j.fertnstert.2009.05.011Chen, M., Du, J., Zhao, J., Lv, H., Wang, Y., Chen, X., … Ling, X. (2017). The sex ratio of singleton and twin delivery offspring in assisted reproductive technology in China. Scientific Reports, 7(1). doi:10.1038/s41598-017-06152-9Leme, L. O., Carvalho, J. O., Franco, M. M., & Dode, M. A. N. (2020). Effect of sex on cryotolerance of bovine embryos produced in vitro. Theriogenology, 141, 219-227. doi:10.1016/j.theriogenology.2019.05.002Spijkers, S., Lens, J. W., Schats, R., & Lambalk, C. B. (2017). Fresh and Frozen-Thawed Embryo Transfer Compared to Natural Conception: Differences in Perinatal Outcome. Gynecologic and Obstetric Investigation, 82(6), 538-546. doi:10.1159/000468935Chen, L., Ni, X., Xu, Z., Fang, J., Zhang, N., & Li, D. (2020). Effect of frozen and fresh embryo transfers on the birthweight of live-born twins. European Journal of Obstetrics & Gynecology and Reproductive Biology, 246, 50-54. doi:10.1016/j.ejogrb.2020.01.008Uk, A., Collardeau-Frachon, S., Scanvion, Q., Michon, L., & Amar, E. (2018). Assisted Reproductive Technologies and imprinting disorders: Results of a study from a French congenital malformations registry. European Journal of Medical Genetics, 61(9), 518-523. doi:10.1016/j.ejmg.2018.05.017Li, Y., Donnelly, C. G., & Rivera, R. M. (2019). Overgrowth Syndrome. Veterinary Clinics of North America: Food Animal Practice, 35(2), 265-276. doi:10.1016/j.cvfa.2019.02.007Chen, Z., Hagen, D. E., Elsik, C. G., Ji, T., Morris, C. J., Moon, L. E., & Rivera, R. M. (2015). Characterization of global loss of imprinting in fetal overgrowth syndrome induced by assisted reproduction. Proceedings of the National Academy of Sciences, 112(15), 4618-4623. doi:10.1073/pnas.1422088112Mussa, A., Molinatto, C., Cerrato, F., Palumbo, O., Carella, M., Baldassarre, G., … Ferrero, G. B. (2017). Assisted Reproductive Techniques and Risk of Beckwith-Wiedemann Syndrome. Pediatrics, 140(1), e20164311. doi:10.1542/peds.2016-4311Van Heertum, K., & Weinerman, R. (2018). Neonatal outcomes following fresh as compared to frozen/thawed embryo transfer in in vitro fertilization. Birth Defects Research, 110(8), 625-629. doi:10.1002/bdr2.1216Feuer, S. K., Liu, X., Donjacour, A., Lin, W., Simbulan, R. K., Giritharan, G., … Rinaudo, P. F. (2014). Use of a Mouse In Vitro Fertilization Model to Understand the Developmental Origins of Health and Disease Hypothesis. Endocrinology, 155(5), 1956-1969. doi:10.1210/en.2013-2081Marshall, K. L., & Rivera, R. M. (2018). The effects of superovulation and reproductive aging on the epigenome of the oocyte and embryo. Molecular Reproduction and Development, 85(2), 90-105. doi:10.1002/mrd.22951Gordon Baker, H. W. (1998). REPRODUCTIVE EFFECTS OF NONTESTICULAR ILLNESS. Endocrinology and Metabolism Clinics of North America, 27(4), 831-850. doi:10.1016/s0889-8529(05)70043-8Calle, A., Miranda, A., Fernandez-Gonzalez, R., Pericuesta, E., Laguna, R., & Gutierrez-Adan, A. (2012). Male Mice Produced by In Vitro Culture Have Reduced Fertility and Transmit Organomegaly and Glucose Intolerance to Their Male Offspring1. Biology of Reproduction, 87(2). doi:10.1095/biolreprod.112.100743Belva, F., Bonduelle, M., Roelants, M., Michielsen, D., Van Steirteghem, A., Verheyen, G., & Tournaye, H. (2016). Semen quality of young adult ICSI offspring: the first results. Human Reproduction, 31(12), 2811-2820. doi:10.1093/humrep/dew245Vidal, M., Vellvé, K., González-Comadran, M., Robles, A., Prat, M., Torné, M., … Checa, M. A. (2017). Perinatal outcomes in children born after fresh or frozen embryo transfer: a Catalan cohort study based on 14,262 newborns. Fertility and Sterility, 107(4), 940-947. doi:10.1016/j.fertnstert.2017.01.021Sallem, A., Santulli, P., Barraud-Lange, V., Le Foll, N., Ferreux, L., Maignien, C., … Pocate-Cheriet, K. (2017). Extended culture of poor-quality supernumerary embryos improves ART outcomes. Journal of Assisted Reproduction and Genetics, 35(2), 311-319. doi:10.1007/s10815-017-1063-7Marsico, T. V., Camargo, J. de, Valente, R. S., & Sudano, M. J. (2019). Embryo competence and cryosurvival: Molecular and cellular features. Animal Reproduction, 16(3), 423-439. doi:10.21451/1984-3143-ar2019-0072Mehdid, A., Martí-De Olives, A., Fernández, N., Rodríguez, M., & Peris, C. (2019). Effect of stress on somatic cell count and milk yield and composition in goats. Research in Veterinary Science, 125, 61-70. doi:10.1016/j.rvsc.2019.05.015Sinclair, K. D., Rutherford, K. M. D., Wallace, J. M., Brameld, J. M., Stöger, R., Alberio, R., … Dwyer, C. M. (2016). Epigenetics and developmental programming of welfare and production traits in farm animals. Reproduction, Fertility and Development, 28(10), 1443. doi:10.1071/rd16102Siqueira, L. G. B., Dikmen, S., Ortega, M. S., & Hansen, P. J. (2017). Postnatal phenotype of dairy cows is altered by in vitro embryo production using reverse X-sorted semen. Journal of Dairy Science, 100(7), 5899-5908. doi:10.3168/jds.2016-12539Mahsoudi, B., Li, A., & O’Neill, C. (2007). Assessment of the Long-Term and Transgenerational Consequences of Perturbing Preimplantation Embryo Development in Mice1. Biology of Reproduction, 77(5), 889-896. doi:10.1095/biolreprod.106.057885Del Ciampo, L., & Del Ciampo, I. (2018). Breastfeeding and the Benefits of Lactation for Women’s Health. Revista Brasileira de Ginecologia e Obstetrícia / RBGO Gynecology and Obstetrics, 40(06), 354-359. doi:10.1055/s-0038-1657766Calle, A., Fernandez-Gonzalez, R., Ramos-Ibeas, P., Laguna-Barraza, R., Perez-Cerezales, S., Bermejo-Alvarez, P., … Gutierrez-Adan, A. (2012). Long-term and transgenerational effects of in vitro culture on mouse embryos. Theriogenology, 77(4), 785-793. doi:10.1016/j.theriogenology.2011.07.016Auroux, M. (2000). Long-term effects in progeny of paternal environment and of gamete/embryo cryopreservation. Human Reproduction Update, 6(6), 550-563. doi:10.1093/humupd/6.6.55

    Long-Term Phenotypic and Proteomic Changes Following Vitrified Embryo Transfer in the Rabbit Model

    Full text link
    [EN] This study was conducted to demonstrate how a vitrified embryo transfer procedure incurs phenotypic and molecular changes throughout life. This study reports the first evidence describing that embryonic manipulation during a vitrified embryo transfer cycle induced molecular modifications, concerning oxidative phosphorylation and dysregulations in zinc and lipid metabolism in liver tissue, which has been reported as responsible for postnatal variations of the phenotype. Nowadays, assisted reproductive technologies (ARTs) are considered valuable contributors to our past, but a future without their use is inconceivable. However, in recent years, several studies have evidenced a potential impact of ART on long-term development in mammal species. To date, the long-term follow-up data are still limited. So far, studies have mainly focused on in vitro fertilization or in vitro culture, with information from gametes/embryos cryopreservation field being practically missing. Herein, we report an approach to determine whether a vitrified embryo transfer procedure would have long-term consequences on the offspring. Using the rabbit as a model, we compared animals derived from vitrified-transferred embryos versus those naturally conceived, studying the growth performance, plus the weight throughout life, and the internal organs/tissues phenotype. The healthy status was assessed over the hematological and biochemical parameters in peripheral blood. Additionally, a comparative proteomic analysis was conducted in the liver tissue to investigate molecular cues related to vitrified embryo transfer in an adult tissue. After vitrified embryo transfer, birth weight was increased, and the growth performance was diminished in a sex-specific manner. In addition, vitrified-transferred animals showed significantly lower body, liver and heart weights in adulthood. Molecular analyses revealed that vitrified embryo transfer triggers reprogramming of the liver proteome. Functional analysis of the differentially expressed proteins showed changes in relation to oxidative phosphorylation and dysregulations in the zinc and lipid metabolism, which has been reported as possible causes of a disturbed growth pattern. Therefore, we conclude that vitrified embryo transfer is not a neutral procedure, and it incurs long-term effects in the offspring both at phenotypic and molecular levels. These results described a striking example of the developmental plasticity exhibited by the mammalian embryo.Funding from the Ministry of Economy, Industry and Competitiveness (Research project: AGL2017-85162-C2-1-R and AGL2014-53405-C2-1-P) is acknowledged. X.G.D. was supported by a research grant from the Ministry of Economy, Industry and Competitiveness (BES-2015-072429).Garcia-Dominguez, X.; Marco-Jiménez, F.; Peñaranda, D.; Vicente Antón, JS. (2020). Long-Term Phenotypic and Proteomic Changes Following Vitrified Embryo Transfer in the Rabbit Model. Animals. 10(6):1-16. https://doi.org/10.3390/ani10061043S116106Crawford, G., & Ledger, W. (2018). In vitro fertilisation/intracytoplasmic sperm injection beyond 2020. BJOG: An International Journal of Obstetrics & Gynaecology, 126(2), 237-243. doi:10.1111/1471-0528.15526Findlay, J. K., Holland, M. K., & Wong, B. B. M. (2019). Reproductive science and the future of the planet. Reproduction, 158(3), R91-R96. doi:10.1530/rep-18-0640Vrooman, L. A., & Bartolomei, M. S. (2017). Can assisted reproductive technologies cause adult-onset disease? Evidence from human and mouse. Reproductive Toxicology, 68, 72-84. doi:10.1016/j.reprotox.2016.07.015Roseboom, T. J. (2018). Developmental plasticity and its relevance to assisted human reproduction. Human Reproduction, 33(4), 546-552. doi:10.1093/humrep/dey034Fleming, T. P., Watkins, A. J., Velazquez, M. A., Mathers, J. C., Prentice, A. M., Stephenson, J., … Godfrey, K. M. (2018). Origins of lifetime health around the time of conception: causes and consequences. The Lancet, 391(10132), 1842-1852. doi:10.1016/s0140-6736(18)30312-xFeuer, S., & Rinaudo, P. (2016). From Embryos to Adults: A DOHaD Perspective on In Vitro Fertilization and Other Assisted Reproductive Technologies. Healthcare, 4(3), 51. doi:10.3390/healthcare4030051Feuer, S. K., & Rinaudo, P. F. (2017). Physiological, metabolic and transcriptional postnatal phenotypes ofin vitrofertilization (IVF) in the mouse. Journal of Developmental Origins of Health and Disease, 8(4), 403-410. doi:10.1017/s204017441700023xDuranthon, V., & Chavatte-Palmer, P. (2018). Long term effects of ART: What do animals tell us? Molecular Reproduction and Development, 85(4), 348-368. doi:10.1002/mrd.22970Ramos‐Ibeas, P., Heras, S., Gómez‐Redondo, I., Planells, B., Fernández‐González, R., Pericuesta, E., … Gutiérrez‐Adán, A. (2019). Embryo responses to stress induced by assisted reproductive technologies. Molecular Reproduction and Development, 86(10), 1292-1306. doi:10.1002/mrd.23119Chen, M., & Heilbronn, L. K. (2017). The health outcomes of human offspring conceived by assisted reproductive technologies (ART). Journal of Developmental Origins of Health and Disease, 8(4), 388-402. doi:10.1017/s2040174417000228Novakovic, B., Lewis, S., Halliday, J., Kennedy, J., Burgner, D. P., Czajko, A., … Saffery, R. (2019). Assisted reproductive technologies are associated with limited epigenetic variation at birth that largely resolves by adulthood. Nature Communications, 10(1). doi:10.1038/s41467-019-11929-9Belva, F., Bonduelle, M., Roelants, M., Michielsen, D., Van Steirteghem, A., Verheyen, G., & Tournaye, H. (2016). Semen quality of young adult ICSI offspring: the first results. Human Reproduction, 31(12), 2811-2820. doi:10.1093/humrep/dew245Calle, A., Fernandez-Gonzalez, R., Ramos-Ibeas, P., Laguna-Barraza, R., Perez-Cerezales, S., Bermejo-Alvarez, P., … Gutierrez-Adan, A. (2012). Long-term and transgenerational effects of in vitro culture on mouse embryos. Theriogenology, 77(4), 785-793. doi:10.1016/j.theriogenology.2011.07.016Feuer, S. K., Liu, X., Donjacour, A., Lin, W., Simbulan, R. K., Giritharan, G., … Rinaudo, P. F. (2014). Use of a Mouse In Vitro Fertilization Model to Understand the Developmental Origins of Health and Disease Hypothesis. Endocrinology, 155(5), 1956-1969. doi:10.1210/en.2013-2081Garcia-Dominguez, X., Vicente, J. S., & Marco-Jiménez, F. (2020). Developmental Plasticity in Response to Embryo Cryopreservation: The Importance of the Vitrification Device in Rabbits. Animals, 10(5), 804. doi:10.3390/ani10050804Dulioust, E., Toyama, K., Busnel, M. C., Moutier, R., Carlier, M., Marchaland, C., … Auroux, M. (1995). Long-term effects of embryo freezing in mice. Proceedings of the National Academy of Sciences, 92(2), 589-593. doi:10.1073/pnas.92.2.589Fischer, B., Chavatte-Palmer, P., Viebahn, C., Navarrete Santos, A., & Duranthon, V. (2012). Rabbit as a reproductive model for human health. REPRODUCTION, 144(1), 1-10. doi:10.1530/rep-12-0091Servick, K. (2014). Unsettled questions trail IVF’s success. Science, 345(6198), 744-746. doi:10.1126/science.345.6198.744De Geyter, C., Calhaz-Jorge, C., Kupka, M. S., Wyns, C., Mocanu, E., Motrenko, T., … Goossens, V. (2020). ART in Europe, 2015: results generated from European registries by ESHRE†. Human Reproduction Open, 2020(1). doi:10.1093/hropen/hoz038Sparks, A. (2015). Human Embryo Cryopreservation—Methods, Timing, and other Considerations for Optimizing an Embryo Cryopreservation Program. Seminars in Reproductive Medicine, 33(02), 128-144. doi:10.1055/s-0035-1546826Vicente, J.-S., Viudes-de-Castro, M.-P., & García, M.-L. (1999). In vivo survival rate of rabbit morulae after vitrification in a medium without serum protein. Reproduction Nutrition Development, 39(5-6), 657-662. doi:10.1051/rnd:19990511Garcia-Dominguez, X., Marco-Jimenez, F., Viudes-de-Castro, M. P., & Vicente, J. S. (2019). Minimally Invasive Embryo Transfer and Embryo Vitrification at the Optimal Embryo Stage in Rabbit Model. Journal of Visualized Experiments, (147). doi:10.3791/58055Besenfelder, U., & Brem, G. (1993). Laparoscopic embryo transfer in rabbits. Reproduction, 99(1), 53-56. doi:10.1530/jrf.0.0990053Zucker, I., & Beery, A. K. (2010). Males still dominate animal studies. Nature, 465(7299), 690-690. doi:10.1038/465690aKineman, R. D., del Rio-Moreno, M., & Sarmento-Cabral, A. (2018). 40 YEARS of IGF1: Understanding the tissue-specific roles of IGF1/IGF1R in regulating metabolism using the Cre/loxP system. Journal of Molecular Endocrinology, 61(1), T187-T198. doi:10.1530/jme-18-0076Adamek, A., & Kasprzak, A. (2018). Insulin-Like Growth Factor (IGF) System in Liver Diseases. International Journal of Molecular Sciences, 19(5), 1308. doi:10.3390/ijms19051308Lavara, R., Baselga, M., Marco-Jiménez, F., & Vicente, J. S. (2015). Embryo vitrification in rabbits: Consequences for progeny growth. Theriogenology, 84(5), 674-680. doi:10.1016/j.theriogenology.2015.04.025Ding, C., Li, Y., Guo, F., Jiang, Y., Ying, W., Li, D., … He, F. (2016). A Cell-type-resolved Liver Proteome. Molecular & Cellular Proteomics, 15(10), 3190-3202. doi:10.1074/mcp.m116.060145Shevchenko, A., Wilm, M., Vorm, O., & Mann, M. (1996). Mass Spectrometric Sequencing of Proteins from Silver-Stained Polyacrylamide Gels. Analytical Chemistry, 68(5), 850-858. doi:10.1021/ac950914hShilov, I. V., Seymour, S. L., Patel, A. A., Loboda, A., Tang, W. H., Keating, S. P., … Schaeffer, D. A. (2007). The Paragon Algorithm, a Next Generation Search Engine That Uses Sequence Temperature Values and Feature Probabilities to Identify Peptides from Tandem Mass Spectra. Molecular & Cellular Proteomics, 6(9), 1638-1655. doi:10.1074/mcp.t600050-mcp200Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S., Kundu, D. J., … Vizcaíno, J. A. (2018). The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Research, 47(D1), D442-D450. doi:10.1093/nar/gky1106Moore, D. M., Zimmerman, K., & Smith, S. A. (2015). Hematological Assessment in Pet Rabbits. Clinics in Laboratory Medicine, 35(3), 617-627. doi:10.1016/j.cll.2015.05.010MA Kamel, R. (2013). Assisted Reproductive Technology after the birth of Louise Brown. Gynecology & Obstetrics, 03(03). doi:10.4172/2161-0932.1000156Auroux, M., Cerutti, I., Ducot, B., & Loeuillet, A. (2004). Is embryo-cryopreservation really neutral? Reproductive Toxicology, 18(6), 813-818. doi:10.1016/j.reprotox.2004.04.010Cifre, J., Baselga, M., Gómez, E. A., & de la Luz, G. M. (1999). Effect of embryo cryopreservation techniques on reproductive and growth traits in rabbits. Annales de Zootechnie, 48(1), 15-24. doi:10.1051/animres:19990102Saenz-de-Juano, M. D., Marco-Jimenez, F., Schmaltz-Panneau, B., Jimenez-Trigos, E., Viudes-de-Castro, M. P., Peñaranda, D. S., … Vicente, J. S. (2014). Vitrification alters rabbit foetal placenta at transcriptomic and proteomic level. REPRODUCTION, 147(6), 789-801. doi:10.1530/rep-14-0019Spijkers, S., Lens, J. W., Schats, R., & Lambalk, C. B. (2017). Fresh and Frozen-Thawed Embryo Transfer Compared to Natural Conception: Differences in Perinatal Outcome. Gynecologic and Obstetric Investigation, 82(6), 538-546. doi:10.1159/000468935Hann, M., Roberts, S. A., D’Souza, S. W., Clayton, P., Macklon, N., & Brison, D. R. (2018). The growth of assisted reproductive treatment-conceived children from birth to 5 years: a national cohort study. BMC Medicine, 16(1). doi:10.1186/s12916-018-1203-7Chen, Z., Robbins, K. M., Wells, K. D., & Rivera, R. M. (2013). Large offspring syndrome. Epigenetics, 8(6), 591-601. doi:10.4161/epi.24655Gidenne, T., Combes, S., Feugier, A., Jehl, N., Arveux, P., Boisot, P., … Verdelhan, S. (2009). Feed restriction strategy in the growing rabbit. 2. Impact on digestive health, growth and carcass characteristics. Animal, 3(4), 509-515. doi:10.1017/s1751731108003790Velazquez, M. A., Sheth, B., Smith, S. J., Eckert, J. J., Osmond, C., & Fleming, T. P. (2018). Insulin and branched-chain amino acid depletion during mouse preimplantation embryo culture programmes body weight gain and raised blood pressure during early postnatal life. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1864(2), 590-600. doi:10.1016/j.bbadis.2017.11.020Donjacour, A., Liu, X., Lin, W., Simbulan, R., & Rinaudo, P. F. (2014). In Vitro Fertilization Affects Growth and Glucose Metabolism in a Sex-Specific Manner in an Outbred Mouse Model1. Biology of Reproduction, 90(4). doi:10.1095/biolreprod.113.113134Mahsoudi, B., Li, A., & O’Neill, C. (2007). Assessment of the Long-Term and Transgenerational Consequences of Perturbing Preimplantation Embryo Development in Mice1. Biology of Reproduction, 77(5), 889-896. doi:10.1095/biolreprod.106.057885Feuer, S. K., Donjacour, A., Simbulan, R. K., Lin, W., Liu, X., Maltepe, E., & Rinaudo, P. F. (2014). Sexually Dimorphic Effect of In Vitro Fertilization (IVF) on Adult Mouse Fat and Liver Metabolomes. Endocrinology, 155(11), 4554-4567. doi:10.1210/en.2014-1465Fernandez-Gonzalez, R., Moreira, P., Bilbao, A., Jimenez, A., Perez-Crespo, M., Ramirez, M. A., … Gutierrez-Adan, A. (2004). Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior. Proceedings of the National Academy of Sciences, 101(16), 5880-5885. doi:10.1073/pnas.0308560101Calle, A., Miranda, A., Fernandez-Gonzalez, R., Pericuesta, E., Laguna, R., & Gutierrez-Adan, A. (2012). Male Mice Produced by In Vitro Culture Have Reduced Fertility and Transmit Organomegaly and Glucose Intolerance to Their Male Offspring1. Biology of Reproduction, 87(2). doi:10.1095/biolreprod.112.100743Riesche, L., & Bartolomei, M. (2018). Assisted Reproductive Technologies and the Placenta: Clinical, Morphological, and Molecular Outcomes. Seminars in Reproductive Medicine, 36(03/04), 240-248. doi:10.1055/s-0038-1676640Hyatt, M. A., Budge, H., & Symonds, M. E. (2008). Early developmental influences on hepatic organogenesis. Organogenesis, 4(3), 170-175. doi:10.4161/org.4.3.6849Møller, S., & Bernardi, M. (2013). Interactions of the heart and the liver. European Heart Journal, 34(36), 2804-2811. doi:10.1093/eurheartj/eht246Peterside, I. E., Selak, M. A., & Simmons, R. A. (2003). Impaired oxidative phosphorylation in hepatic mitochondria in growth-retarded rats. American Journal of Physiology-Endocrinology and Metabolism, 285(6), E1258-E1266. doi:10.1152/ajpendo.00437.2002Von Kleist-Retzow, J.-C., Cormier-Daire, V., Viot, G., Goldenberg, A., Mardach, B., Amiel, J., … De Lonlay, P. (2003). Antenatal manifestations of mitochondrial respiratory chain deficiency. The Journal of Pediatrics, 143(2), 208-212. doi:10.1067/s0022-3476(03)00130-6Hüttemann, M., Lee, I., Samavati, L., Yu, H., & Doan, J. W. (2007). Regulation of mitochondrial oxidative phosphorylation through cell signaling. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1773(12), 1701-1720. doi:10.1016/j.bbamcr.2007.10.001Gibson, K., Halliday, J. L., Kirby, D. M., Yaplito-Lee, J., Thorburn, D. R., & Boneh, A. (2008). Mitochondrial Oxidative Phosphorylation Disorders Presenting in Neonates: Clinical Manifestations and Enzymatic and Molecular Diagnoses. PEDIATRICS, 122(5), 1003-1008. doi:10.1542/peds.2007-3502Abu-Libdeh, B., Douiev, L., Amro, S., Shahrour, M., Ta-Shma, A., Miller, C., … Saada, A. (2017). Mutation in the COX4I1 gene is associated with short stature, poor weight gain and increased chromosomal breaks, simulating Fanconi anemia. European Journal of Human Genetics, 25(10), 1142-1146. doi:10.1038/ejhg.2017.112Hara, T., Kin, A., Aoki, S., Nakamura, S., Shirasuna, K., Kuwayama, T., & Iwata, H. (2018). Resveratrol enhances the clearance of mitochondrial damage by vitrification and improves the development of vitrified-warmed bovine embryos. PLOS ONE, 13(10), e0204571. doi:10.1371/journal.pone.0204571Singh, A., Prasad, K. N., Singh, A. K., Singh, S. K., Gupta, K. K., Paliwal, V. K., … Gupta, R. K. (2016). Human Glutathione S-Transferase Enzyme Gene Polymorphisms and Their Association With Neurocysticercosis. Molecular Neurobiology, 54(4), 2843-2851. doi:10.1007/s12035-016-9779-4Almazroo, O. A., Miah, M. K., & Venkataramanan, R. (2017). Drug Metabolism in the Liver. Clinics in Liver Disease, 21(1), 1-20. doi:10.1016/j.cld.2016.08.001Bird, A. J. (2015). Cellular sensing and transport of metal ions: implications in micronutrient homeostasis. The Journal of Nutritional Biochemistry, 26(11), 1103-1115. doi:10.1016/j.jnutbio.2015.08.002Xia, X., Jiang, S.-W., Zhang, Y., Hu, Y., Yi, H., Liu, J., … Liu, J. (2019). Serum levels of trace elements in children born after assisted reproductive technology. Clinica Chimica Acta, 495, 664-669. doi:10.1016/j.cca.2018.09.032Li, B., Xiao, X., Chen, S., Huang, J., Ma, Y., Tang, N., … Wang, X. (2016). Changes of Phospholipids in Fetal Liver of Mice Conceived by In Vitro Fertilization1. Biology of Reproduction, 94(5). doi:10.1095/biolreprod.115.136325Guo, X.-Y., Liu, X.-M., Jin, L., Wang, T.-T., Ullah, K., Sheng, J.-Z., & Huang, H.-F. (2017). Cardiovascular and metabolic profiles of offspring conceived by assisted reproductive technologies: a systematic review and meta-analysis. Fertility and Sterility, 107(3), 622-631.e5. doi:10.1016/j.fertnstert.2016.12.007Miles, H. L., Hofman, P. L., Peek, J., Harris, M., Wilson, D., Robinson, E. M., … Cutfield, W. S. (2007). In Vitro Fertilization Improves Childhood Growth and Metabolism. The Journal of Clinical Endocrinology & Metabolism, 92(9), 3441-3445. doi:10.1210/jc.2006-246

    Impact of embryo technologies on secondary sex ratio in rabbit

    Full text link
    [EN] Increasing evidence indicates that assisted reproductive technologies (ARTs) disturb skewed sex-ratio and induce sex-dimorphic postnatal effects. Undoubtedly, the combination of multiple ovulation and embryo transfer (MOET) together with the use of vitrification technique (MOVET) is currently being used in breeding programs. However, since the first case of sex skewing reported in 1991, the accumulative and long-term transmission of skewed sex-ratio to future generations has not been thoroughly evaluated. Here we test as MOVET program induce a skewed sex ratio, and we consider skewed sex ratio transmission to future generations. To this end, we first evaluated the F1 generation, demonstrating that a MOVET program causes a severe imbalance skewed secondary sex ratio (SSR) towards male by 12%. This imbalanced persist after a second MOVET program (F2 generation), with an accumulative skewed SSR towards male by 25%. Finally, using a crossbred generation derived from crossing F1 males derived from a MOVET program with naturally-conceived (NC) females, we show that the imbalance skewed SRR persist. Bodyweight comparison between MOVET animals and NC counterparts revealed significant changes at birth, weaning and adulthood. However, there was a significant interaction between F2 MOVET animals and sex, demonstrating an apparent accumulative sex-dimorphic effect. At adulthood, MOVET derived males presented a lower body weight. In conclusion, we show that the MOVET program causes a direct, accumulative and long-term transmission of skewed SSR.This work was supported by the Ministry of Economy, Industry and Competitiveness (Research project: AGL2017-85162-C2-1-R) is acknowledged. X. Garcia-Dominguez was supported by a research grant from the Ministry of Economy, Industry and Competitiveness (BES-2015-072429). English text version was revised by N. Macowan English Language Service.Garcia-Dominguez, X.; Juarez, JD.; Vicente Antón, JS.; Marco-Jiménez, F. (2020). Impact of embryo technologies on secondary sex ratio in rabbit. Cryobiology. 97:60-65. https://doi.org/10.1016/j.cryobiol.2020.10.008S606597Auroux, M., Cerutti, I., Ducot, B., & Loeuillet, A. (2004). Is embryo-cryopreservation really neutral? Reproductive Toxicology, 18(6), 813-818. doi:10.1016/j.reprotox.2004.04.010Avery, B., Madison, V., & Greve, T. (1991). Sex and development in bovine in-vitro fertilized embryos. Theriogenology, 35(5), 953-963. doi:10.1016/0093-691x(91)90306-xBermejo-Alvarez, P., Rizos, D., Rath, D., Lonergan, P., & Gutierrez-Adan, A. (2010). Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts. Proceedings of the National Academy of Sciences, 107(8), 3394-3399. doi:10.1073/pnas.0913843107Bermejo-Álvarez, P., Rizos, D., Rath, D., Lonergan, P., & Gutierrez-Adan, A. (2008). Epigenetic differences between male and female bovine blastocysts produced in vitro. Physiological Genomics, 32(2), 264-272. doi:10.1152/physiolgenomics.00234.2007Bermejo-Alvarez, P., Rizos, D., Lonergan, P., & Gutierrez-Adan, A. (2011). Transcriptional sexual dimorphism during preimplantation embryo development and its consequences for developmental competence and adult health and disease. REPRODUCTION, 141(5), 563-570. doi:10.1530/rep-10-0482Besenfelder, U., & Brem, G. (1993). Laparoscopic embryo transfer in rabbits. Reproduction, 99(1), 53-56. doi:10.1530/jrf.0.0990053Bu, Z., Chen, Z.-J., Huang, G., Zhang, H., Wu, Q., Ma, Y., … Sun, Y. (2014). Live Birth Sex Ratio after In Vitro Fertilization and Embryo Transfer in China - An Analysis of 121,247 Babies from 18 Centers. PLoS ONE, 9(11), e113522. doi:10.1371/journal.pone.0113522Calle, A., Fernandez-Gonzalez, R., Ramos-Ibeas, P., Laguna-Barraza, R., Perez-Cerezales, S., Bermejo-Alvarez, P., … Gutierrez-Adan, A. (2012). Long-term and transgenerational effects of in vitro culture on mouse embryos. Theriogenology, 77(4), 785-793. doi:10.1016/j.theriogenology.2011.07.016Carvalho, R. V., Del Campo, M. R., Palasz, A. T., Plante, Y., & Mapletoft, R. J. (1996). Survival rates and sex ratio of bovine IVE embryos frozen at different developmental stages on day 7. Theriogenology, 45(2), 489-498. doi:10.1016/0093-691x(95)00385-lChen, M., Du, J., Zhao, J., Lv, H., Wang, Y., Chen, X., … Ling, X. (2017). The sex ratio of singleton and twin delivery offspring in assisted reproductive technology in China. Scientific Reports, 7(1). doi:10.1038/s41598-017-06152-9Donjacour, A., Liu, X., Lin, W., Simbulan, R., & Rinaudo, P. F. (2014). In Vitro Fertilization Affects Growth and Glucose Metabolism in a Sex-Specific Manner in an Outbred Mouse Model1. Biology of Reproduction, 90(4). doi:10.1095/biolreprod.113.113134Dulioust, E., Toyama, K., Busnel, M. C., Moutier, R., Carlier, M., Marchaland, C., … Auroux, M. (1995). Long-term effects of embryo freezing in mice. Proceedings of the National Academy of Sciences, 92(2), 589-593. doi:10.1073/pnas.92.2.589Feuer, S. K., Donjacour, A., Simbulan, R. K., Lin, W., Liu, X., Maltepe, E., & Rinaudo, P. F. (2014). Sexually Dimorphic Effect of In Vitro Fertilization (IVF) on Adult Mouse Fat and Liver Metabolomes. Endocrinology, 155(11), 4554-4567. doi:10.1210/en.2014-1465Feuer, S., & Rinaudo, P. (2016). From Embryos to Adults: A DOHaD Perspective on In Vitro Fertilization and Other Assisted Reproductive Technologies. Healthcare, 4(3), 51. doi:10.3390/healthcare4030051Feuer, S. K., & Rinaudo, P. F. (2017). Physiological, metabolic and transcriptional postnatal phenotypes ofin vitrofertilization (IVF) in the mouse. Journal of Developmental Origins of Health and Disease, 8(4), 403-410. doi:10.1017/s204017441700023xFleming, T. P., Watkins, A. J., Velazquez, M. A., Mathers, J. C., Prentice, A. M., Stephenson, J., … Godfrey, K. M. (2018). Origins of lifetime health around the time of conception: causes and consequences. The Lancet, 391(10132), 1842-1852. doi:10.1016/s0140-6736(18)30312-xGarcia-Dominguez, X., Marco-Jiménez, F., Peñaranda, D. S., Diretto, G., García-Carpintero, V., Cañizares, J., & Vicente, J. S. (2020). Long-term and transgenerational phenotypic, transcriptional and metabolic effects in rabbit males born following vitrified embryo transfer. Scientific Reports, 10(1). doi:10.1038/s41598-020-68195-9Garcia-Dominguez, X., Vicente, J. S., & Marco-Jiménez, F. (2020). Developmental Plasticity in Response to Embryo Cryopreservation: The Importance of the Vitrification Device in Rabbits. Animals, 10(5), 804. doi:10.3390/ani10050804Garcia-Dominguez, X., Vicente, J. S., Viudes-de-Castro, M. P., & Marco-Jiménez, F. (2020). Long-Term Effects Following Fresh/Vitrified Embryo Transfer Are Transmitted by Paternal Germline in a Large Size Rabbit Cohort. Animals, 10(8), 1272. doi:10.3390/ani10081272Gardner, D. K., Larman, M. G., & Thouas, G. A. (2010). Sex-related physiology of the preimplantation embryo. Molecular Human Reproduction, 16(8), 539-547. doi:10.1093/molehr/gaq042Gebert, C., Wrenzycki, C., Herrmann, D., Gröger, D., Thiel, J., Reinhardt, R., … Niemann, H. (2009). DNA methylation in the IGF2 intragenic DMR is re-established in a sex-specific manner in bovine blastocysts after somatic cloning. Genomics, 94(1), 63-69. doi:10.1016/j.ygeno.2009.03.004Gómez, E., Caamaño, J. N., Corrales, F. J., Díez, C., Correia-Álvarez, E., Martín, D., … Muñoz, M. (2013). Embryonic Sex Induces Differential Expression of Proteins in Bovine Uterine Fluid. Journal of Proteome Research, 12(3), 1199-1210. doi:10.1021/pr300845eGutiérrez-Adán, A., Granados, J., Pintado, B., & De La Fuente, J. (2001). Influence of glucose on the sex ratio of bovine IVM/IVF embryos cultured in vitro. Reproduction, Fertility and Development, 13(6), 361. doi:10.1071/rd00039Kobayashi, S., Isotani, A., Mise, N., Yamamoto, M., Fujihara, Y., Kaseda, K., … Okabe, M. (2006). Comparison of Gene Expression in Male and Female Mouse Blastocysts Revealed Imprinting of the X-Linked Gene, Rhox5/Pem, at Preimplantation Stages. Current Biology, 16(2), 166-172. doi:10.1016/j.cub.2005.11.071Laguna-Barraza, R., Bermejo-Álvarez, P., Ramos-Ibeas, P., de Frutos, C., López-Cardona, A. P., Calle, A., … Gutierrez-Adan, A. (2013). Sex-specific embryonic origin of postnatal phenotypic variability. Reproduction, Fertility and Development, 25(1), 38. doi:10.1071/rd12262Leibo, S. P., & Sztein, J. M. (2019). Cryopreservation of mammalian embryos: Derivation of a method. Cryobiology, 86, 1-9. doi:10.1016/j.cryobiol.2019.01.007Leme, L. O., Carvalho, J. O., Franco, M. M., & Dode, M. A. N. (2020). Effect of sex on cryotolerance of bovine embryos produced in vitro. Theriogenology, 141, 219-227. doi:10.1016/j.theriogenology.2019.05.002Lin, P.-Y., Huang, F.-J., Kung, F.-T., Wang, L.-J., Chang, S. Y., & Lan, K.-C. (2009). Comparison of the offspring sex ratio between fresh and vitrification-thawed blastocyst transfer. Fertility and Sterility, 92(5), 1764-1766. doi:10.1016/j.fertnstert.2009.05.011Litzky, J. F., Boulet, S. L., Esfandiari, N., Zhang, Y., Kissin, D. M., Theiler, R. N., & Marsit, C. J. (2018). Effect of frozen/thawed embryo transfer on birthweight, macrosomia, and low birthweight rates in US singleton infants. American Journal of Obstetrics and Gynecology, 218(4), 433.e1-433.e10. doi:10.1016/j.ajog.2017.12.223Maalouf, W. E., Mincheva, M. N., Campbell, B. K., & Hardy, I. C. W. (2014). Effects of assisted reproductive technologies on human sex ratio at birth. Fertility and Sterility, 101(5), 1321-1325. doi:10.1016/j.fertnstert.2014.01.041Martı́nez, A. ., Valcárcel, A., de las Heras, M. ., de Matos, D. ., Furnus, C., & Brogliatti, G. (2002). Vitrification of in vitro produced bovine embryos: in vitro and in vivo evaluations. Animal Reproduction Science, 73(1-2), 11-21. doi:10.1016/s0378-4320(02)00121-5Milki, A. A., Jun, S. H., Hinckley, M. D., Westphal, L. W., Giudice, L. C., & Behr, B. (2003). Journal of Assisted Reproduction and Genetics, 20(8), 323-326. doi:10.1023/a:1024861624805Muñoz, M., Gatien, J., Salvetti, P., Martín-González, D., Carrocera, S., & Gómez, E. (2020). Nuclear magnetic resonance analysis of female and male pre-hatching embryo metabolites at the embryo-maternal interface. Metabolomics, 16(4). doi:10.1007/s11306-020-01672-4Narvaez, J. L., Chang, J., Boulet, S. L., Davies, M. J., & Kissin, D. M. (2019). Trends and correlates of the sex distribution among U.S. assisted reproductive technology births. Fertility and Sterility, 112(2), 305-314. doi:10.1016/j.fertnstert.2019.03.034Nedambale, T. L., Dinnyés, A., Yang, X., & Tian, X. C. (2004). Bovine Blastocyst Development In Vitro: Timing, Sex, and Viability Following Vitrification1. Biology of Reproduction, 71(5), 1671-1676. doi:10.1095/biolreprod.104.027987Ng, K. Y. B., Mingels, R., Morgan, H., Macklon, N., & Cheong, Y. (2017). In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: a systematic review. Human Reproduction Update, 24(1), 15-34. doi:10.1093/humupd/dmx028Roseboom, T. J. (2018). Developmental plasticity and its relevance to assisted human reproduction. Human Reproduction, 33(4), 546-552. doi:10.1093/humrep/dey034Sparks, A. (2015). Human Embryo Cryopreservation—Methods, Timing, and other Considerations for Optimizing an Embryo Cryopreservation Program. Seminars in Reproductive Medicine, 33(02), 128-144. doi:10.1055/s-0035-1546826Supramaniam, P. R., Mittal, M., Ohuma, E. O., Lim, L. N., McVeigh, E., Granne, I., & Becker, C. M. (2019). Secondary sex ratio in assisted reproduction: an analysis of 1 376 454 treatment cycles performed in the UK. Human Reproduction Open, 2019(4). doi:10.1093/hropen/hoz020Tan, K., An, L., Miao, K., Ren, L., Hou, Z., Tao, L., … Tian, J. (2016). Impaired imprinted X chromosome inactivation is responsible for the skewed sex ratio following in vitro fertilization. Proceedings of the National Academy of Sciences, 113(12), 3197-3202. doi:10.1073/pnas.1523538113Tan, K., Wang, Z., Zhang, Z., An, L., & Tian, J. (2016). IVF affects embryonic development in a sex-biased manner in mice. REPRODUCTION, 151(4), 443-453. doi:10.1530/rep-15-0588Tarín, J. J., García-Pérez, M. A., Hermenegildo, C., & Cano, A. (2014). Changes in sex ratio from fertilization to birth in assisted-reproductive-treatment cycles. Reproductive Biology and Endocrinology, 12(1), 56. doi:10.1186/1477-7827-12-56Torner, E., Bussalleu, E., Briz, M. D., Yeste, M., & Bonet, S. (2014). Embryo development and sex ratio of in vitro-produced porcine embryos are affected by the energy substrate and hyaluronic acid added to the culture medium. Reproduction, Fertility and Development, 26(4), 570. doi:10.1071/rd13004Valdivia, R. P. A., Kunieda, T., Azuma, S., & Toyoda, Y. (1993). PCR sexing and developmental rate differences in preimplantation mouse embryos fertilized and cultured in vitro. Molecular Reproduction and Development, 35(2), 121-126. doi:10.1002/mrd.1080350204Ventura-Juncá, P., Irarrázaval, I., Rolle, A. J., Gutiérrez, J. I., Moreno, R. D., & Santos, M. J. (2015). In vitro fertilization (IVF) in mammals: epigenetic and developmental alterations. Scientific and bioethical implications for IVF in humans. Biological Research, 48(1). doi:10.1186/s40659-015-0059-yVicente, J.-S., Viudes-de-Castro, M.-P., & García, M.-L. (1999). In vivo survival rate of rabbit morulae after vitrification in a medium without serum protein. Reproduction Nutrition Development, 39(5-6), 657-662. doi:10.1051/rnd:19990511Viudes-de-Castro, M. P., Marco-Jiménez, F., Cedano-Castro, J. I., & Vicente, J. S. (2017). Effect of corifollitropin alfa supplemented with or without LH on ovarian stimulation and embryo viability in rabbit. Theriogenology, 98, 68-74. doi:10.1016/j.theriogenology.2017.05.005Wikland, M., Hardarson, T., Hillensjo, T., Westin, C., Westlander, G., Wood, M., & Wennerholm, U. B. (2010). Obstetric outcomes after transfer of vitrified blastocysts. Human Reproduction, 25(7), 1699-1707. doi:10.1093/humrep/deq117Wrenzycki, C., Lucas-Hahn, A., Herrmann, D., Lemme, E., Korsawe, K., & Niemann, H. (2002). In Vitro Production and Nuclear Transfer Affect Dosage Compensation of the X-Linked Gene Transcripts G6PD, PGK, and Xist in Preimplantation Bovine Embryos1. Biology of Reproduction, 66(1), 127-134. doi:10.1095/biolreprod66.1.127Zacchini, F., Sampino, S., Stankiewicz, A. M., Haaf, T., & Ptak, G. E. (2019). Assessing the epigenetic risks of assisted reproductive technologies: a way forward. The International Journal of Developmental Biology, 63(3-4-5), 217-222. doi:10.1387/ijdb.180402g

    Metabolomic Analysis Reveals Changes in Preimplantation Embryos Following Fresh or Vitrified Transfer

    Full text link
    [EN] Although assisted reproduction technologies (ARTs) are recognised as safe, and most of the offspring seem apparently healthy, there is clear evidence that ARTs are associated with changes in the embryo's developmental trajectory, which incur physiological consequences during the prenatal and postnatal stages of life. The present study aimed to address the influence of early (day-3 embryos) embryo transfer and cryopreservation on embryo survival, size, and metabolome at the preimplantation stage (day-6 embryos). To this end, fresh-transferred (FT) and vitrified-transferred (VT) embryos were compared using naturally-conceived (NC) embryos as a control reference. The results show that as in vitro manipulation was increased (NC < FT < VT), both embryo survival rate (0.91 +/- 0.02, 0.78 +/- 0.05 and 0.63 +/- 0.05, for NC, FT, and VT groups, respectively) and embryo size (3.21 +/- 0.49 mm, 2.15 +/- 0.51 mm, 1.76 +/- 0.46 mm of diameter for NC, FT, and VT groups, respectively) were significantly decreased. Moreover, an unbiased metabolomics analysis showed overall down-accumulation in 40 metabolites among the three experimental groups, with embryo transfer and embryo cryopreservation procedures both exerting a cumulative effect. In this regard, targeted metabolomics findings revealed a significant reduction in some metabolites involved in metabolic pathways, such as the Krebs cycle, amino acids, unsaturated fatty acids, and arachidonic acid metabolisms. Altogether, these findings highlight a synergistic effect between the embryo transfer and vitrification procedures in preimplantation embryos. However, the ex vivo manipulation during embryo transfer seemed to be the major trigger of the embryonic changes, as the deviations added by the vitrification process were relatively smaller.This research was funded by Conselleria d'Educacio, Investigacio, Cultura i Esport, Spain, grant number AICO/2019/272. Ximo Garcia-Dominguez was supported by a research grant from the Ministry of Economy, Industry and Competitiveness of Spain (BES-2015-072429).Garcia-Dominguez, X.; Diretto, G.; Frusciante, S.; Vicente Antón, JS.; Marco-Jiménez, F. (2020). Metabolomic Analysis Reveals Changes in Preimplantation Embryos Following Fresh or Vitrified Transfer. International Journal of Molecular Sciences. 21(19):1-14. https://doi.org/10.3390/ijms21197116S1142119Rizos, D., Maillo, V., Sánchez-Calabuig, M.-J., & Lonergan, P. (2017). The Consequences of Maternal-Embryonic Cross Talk During the Periconception Period on Subsequent Embryonic Development. Advances in Experimental Medicine and Biology, 69-86. doi:10.1007/978-3-319-62414-3_4Avilés, M., Gutiérrez-Adán, A., & Coy, P. (2010). Oviductal secretions: will they be key factors for the future ARTs? MHR: Basic science of reproductive medicine, 16(12), 896-906. doi:10.1093/molehr/gaq056Li, S., & Winuthayanon, W. (2017). Oviduct: roles in fertilization and early embryo development. Journal of Endocrinology, 232(1), R1-R26. doi:10.1530/joe-16-0302Wale, P. L., & Gardner, D. K. (2015). The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Human Reproduction Update, 22(1), 2-22. doi:10.1093/humupd/dmv034Fleming, T. P., Watkins, A. J., Velazquez, M. A., Mathers, J. C., Prentice, A. M., Stephenson, J., … Godfrey, K. M. (2018). Origins of lifetime health around the time of conception: causes and consequences. The Lancet, 391(10132), 1842-1852. doi:10.1016/s0140-6736(18)30312-xRoseboom, T. J. (2018). Developmental plasticity and its relevance to assisted human reproduction. Human Reproduction, 33(4), 546-552. doi:10.1093/humrep/dey034Vrooman, L. A., & Bartolomei, M. S. (2017). Can assisted reproductive technologies cause adult-onset disease? Evidence from human and mouse. Reproductive Toxicology, 68, 72-84. doi:10.1016/j.reprotox.2016.07.015Ng, K. Y. B., Mingels, R., Morgan, H., Macklon, N., & Cheong, Y. (2017). In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: a systematic review. Human Reproduction Update, 24(1), 15-34. doi:10.1093/humupd/dmx028Zacchini, F., Sampino, S., Stankiewicz, A. M., Haaf, T., & Ptak, G. E. (2019). Assessing the epigenetic risks of assisted reproductive technologies: a way forward. The International Journal of Developmental Biology, 63(3-4-5), 217-222. doi:10.1387/ijdb.180402gpDuranthon, V., & Chavatte-Palmer, P. (2018). Long term effects of ART: What do animals tell us? Molecular Reproduction and Development, 85(4), 348-368. doi:10.1002/mrd.22970Ramos‐Ibeas, P., Heras, S., Gómez‐Redondo, I., Planells, B., Fernández‐González, R., Pericuesta, E., … Gutiérrez‐Adán, A. (2019). Embryo responses to stress induced by assisted reproductive technologies. Molecular Reproduction and Development, 86(10), 1292-1306. doi:10.1002/mrd.23119Feuer, S., & Rinaudo, P. (2016). From Embryos to Adults: A DOHaD Perspective on In Vitro Fertilization and Other Assisted Reproductive Technologies. Healthcare, 4(3), 51. doi:10.3390/healthcare4030051Feuer, S. K., & Rinaudo, P. F. (2017). Physiological, metabolic and transcriptional postnatal phenotypes ofin vitrofertilization (IVF) in the mouse. Journal of Developmental Origins of Health and Disease, 8(4), 403-410. doi:10.1017/s204017441700023xRomar, R., Funahashi, H., & Coy, P. (2016). In vitro fertilization in pigs: New molecules and protocols to consider in the forthcoming years. Theriogenology, 85(1), 125-134. doi:10.1016/j.theriogenology.2015.07.017Canovas, S., Ivanova, E., Romar, R., García-Martínez, S., Soriano-Úbeda, C., García-Vázquez, F. A., … Coy, P. (2017). DNA methylation and gene expression changes derived from assisted reproductive technologies can be decreased by reproductive fluids. eLife, 6. doi:10.7554/elife.23670Campo, H., García-Domínguez, X., López-Martínez, S., Faus, A., Vicente Antón, J. S., Marco-Jiménez, F., & Cervelló, I. (2019). Tissue-specific decellularized endometrial substratum mimicking different physiological conditions influences in vitro embryo development in a rabbit model. Acta Biomaterialia, 89, 126-138. doi:10.1016/j.actbio.2019.03.004Le Saint, C., Crespo, K., Bourdiec, A., Bissonnette, F., Buzaglo, K., Couturier, B., … Kadoch, I. J. (2019). Autologous endometrial cell co-culture improves human embryo development to high-quality blastocysts: a randomized controlled trial. Reproductive BioMedicine Online, 38(3), 321-329. doi:10.1016/j.rbmo.2018.12.039Sparks, A. (2015). Human Embryo Cryopreservation—Methods, Timing, and other Considerations for Optimizing an Embryo Cryopreservation Program. Seminars in Reproductive Medicine, 33(02), 128-144. doi:10.1055/s-0035-1546826Saenz-de-Juano, M. D., Marco-Jiménez, F., Peñaranda, D. S., Joly, T., & Vicente, J. S. (2012). Effects of Slow Freezing Procedure on Late Blastocyst Gene Expression and Survival Rate in Rabbit1. Biology of Reproduction, 87(4). doi:10.1095/biolreprod.112.100677Saenz-de-Juano, M. D., Vicente, J. S., Hollung, K., & Marco-Jiménez, F. (2015). Effect of Embryo Vitrification on Rabbit Foetal Placenta Proteome during Pregnancy. PLOS ONE, 10(4), e0125157. doi:10.1371/journal.pone.0125157Saenz-de-Juano, M. D., Marco-Jimenez, F., Schmaltz-Panneau, B., Jimenez-Trigos, E., Viudes-de-Castro, M. P., Peñaranda, D. S., … Vicente, J. S. (2014). Vitrification alters rabbit foetal placenta at transcriptomic and proteomic level. REPRODUCTION, 147(6), 789-801. doi:10.1530/rep-14-0019Vicente, J. S., Saenz-de-Juano, M. D., Jiménez-Trigos, E., Viudes-de-Castro, M. P., Peñaranda, D. S., & Marco-Jiménez, F. (2013). Rabbit morula vitrification reduces early foetal growth and increases losses throughout gestation. Cryobiology, 67(3), 321-326. doi:10.1016/j.cryobiol.2013.09.165Marco-Jiménez, F., Lavara, R., Jiménez-Trigos, E., & Vicente, J. S. (2013). In vivo development of vitrified rabbit embryos: Effects of vitrification device, recipient genotype, and asynchrony. Theriogenology, 79(7), 1124-1129. doi:10.1016/j.theriogenology.2013.02.008Lavara, R., Baselga, M., Marco-Jiménez, F., & Vicente, J. S. (2014). Long-term and transgenerational effects of cryopreservation on rabbit embryos. Theriogenology, 81(7), 988-992. doi:10.1016/j.theriogenology.2014.01.030Lavara, R., Baselga, M., Marco-Jiménez, F., & Vicente, J. S. (2015). Embryo vitrification in rabbits: Consequences for progeny growth. Theriogenology, 84(5), 674-680. doi:10.1016/j.theriogenology.2015.04.025Garcia-Dominguez, X., Vicente, J. S., & Marco-Jiménez, F. (2020). Developmental Plasticity in Response to Embryo Cryopreservation: The Importance of the Vitrification Device in Rabbits. Animals, 10(5), 804. doi:10.3390/ani10050804Gupta, A., Singh, J., Dufort, I., Robert, C., Dias, F. C. F., & Anzar, M. (2017). Transcriptomic difference in bovine blastocysts following vitrification and slow freezing at morula stage. PLOS ONE, 12(11), e0187268. doi:10.1371/journal.pone.0187268García-Domínguez, X., Marco-Jiménez, F., Puigcerver-Barber, M., Más-Pellicer, A., & Vicente, J. S. (2020). The harmful effect of removing the extracellular vitrification medium during embryo cryopreservation using a nylon mesh device in rabbit. Cryobiology, 93, 44-48. doi:10.1016/j.cryobiol.2020.02.013Marco-Jiménez, F., Jiménez-Trigos, E., Almela-Miralles, V., & Vicente, J. S. (2016). Development of Cheaper Embryo Vitrification Device Using the Minimum Volume Method. PLOS ONE, 11(2), e0148661. doi:10.1371/journal.pone.0148661Saenz-de-Juano, M. D., Marco-Jiménez, F., & Vicente, J. S. (2016). Embryo transfer manipulation cause gene expression variation in blastocysts that disrupt implantation and offspring rates at birth in rabbit. European Journal of Obstetrics & Gynecology and Reproductive Biology, 207, 50-55. doi:10.1016/j.ejogrb.2016.10.049Montag, M., Koll, B., Holmes, P., & Ven, H. van der. (2000). Significance of the Number of Embryonic Cells and the State of the Zona Pellucida for Hatching of Mouse Blastocysts In Vitro Versus In Vivo. Biology of Reproduction, 62(6), 1738-1744. doi:10.1095/biolreprod62.6.1738Giritharan, G., Talbi, S., Donjacour, A., Di Sebastiano, F., Dobson, A. T., & Rinaudo, P. F. (2007). Effect of in vitro fertilization on gene expression and development of mouse preimplantation embryos. Reproduction, 134(1), 63-72. doi:10.1530/rep-06-0247Van Landuyt, L., Van de Velde, H., De Vos, A., Haentjens, P., Blockeel, C., Tournaye, H., & Verheyen, G. (2013). Influence of cell loss after vitrification or slow-freezing on further in vitro development and implantation of human Day 3 embryos. Human Reproduction, 28(11), 2943-2949. doi:10.1093/humrep/det356Salilew-Wondim, D., Saeed-Zidane, M., Hoelker, M., Gebremedhn, S., Poirier, M., Pandey, H. O., … Tesfaye, D. (2018). Genome-wide DNA methylation patterns of bovine blastocysts derived from in vivo embryos subjected to in vitro culture before, during or after embryonic genome activation. BMC Genomics, 19(1). doi:10.1186/s12864-018-4826-3Heras, S., De Coninck, D. I. M., Van Poucke, M., Goossens, K., Bogado Pascottini, O., Van Nieuwerburgh, F., … Van Soom, A. (2016). Suboptimal culture conditions induce more deviations in gene expression in male than female bovine blastocysts. BMC Genomics, 17(1). doi:10.1186/s12864-016-2393-zDriver, A. M., Peñagaricano, F., Huang, W., Ahmad, K. R., Hackbart, K. S., Wiltbank, M. C., & Khatib, H. (2012). RNA-Seq analysis uncovers transcriptomic variations between morphologically similar in vivo- and in vitro-derived bovine blastocysts. BMC Genomics, 13(1). doi:10.1186/1471-2164-13-118Gad, A., Hoelker, M., Besenfelder, U., Havlicek, V., Cinar, U., Rings, F., … Tesfaye, D. (2012). Molecular Mechanisms and Pathways Involved in Bovine Embryonic Genome Activation and Their Regulation by Alternative In Vivo and In Vitro Culture Conditions1. Biology of Reproduction, 87(4). doi:10.1095/biolreprod.112.099697Miles, J. R., Blomberg, L. A., Krisher, R. L., Everts, R. E., Sonstegard, T. S., Van Tassell, C. P., & Zuelke, K. A. (2008). Comparative transcriptome analysis of in vivo- and in vitro-produced porcine blastocysts by small amplified RNA-Serial analysis of gene expression (SAR-SAGE). Molecular Reproduction and Development, 75(6), 976-988. doi:10.1002/mrd.20844Bauer, B. K., Isom, S. C., Spate, L. D., Whitworth, K. M., Spollen, W. G., Blake, S. M., … Prather, R. S. (2010). Transcriptional Profiling by Deep Sequencing Identifies Differences in mRNA Transcript Abundance in In Vivo-Derived Versus In Vitro-Cultured Porcine Blastocyst Stage Embryos1. Biology of Reproduction, 83(5), 791-798. doi:10.1095/biolreprod.110.085936Swain, J., Bormann, C., Clark, S., Walters, E., Wheeler, M., & Krisher, R. (2002). Use of energy substrates by various stage preimplantation pig embryos produced in vivo and in vitro. Reproduction, 253-260. doi:10.1530/rep.0.1230253Lee, Y. S. L., Thouas, G. A., & Gardner, D. K. (2015). Developmental kinetics of cleavage stage mouse embryos are related to their subsequent carbohydrate and amino acid utilization at the blastocyst stage. Human Reproduction, 30(3), 543-552. doi:10.1093/humrep/deu334Krisher, R. L., Heuberger, A. L., Paczkowski, M., Stevens, J., Pospisil, C., Prather, R. S., … Schoolcraft, W. B. (2015). Applying metabolomic analyses to the practice of embryology: physiology, development and assisted reproductive technology. Reproduction, Fertility and Development, 27(4), 602. doi:10.1071/rd14359Perkel, K. J., & Madan, P. (2017). Spent culture medium analysis from individually cultured bovine embryos demonstrates metabolomic differences. Zygote, 25(6), 662-674. doi:10.1017/s0967199417000417McKeegan, P. J., & Sturmey, R. G. (2012). The role of fatty acids in oocyte and early embryo development. Reproduction, Fertility and Development, 24(1), 59. doi:10.1071/rd11907Sayre, B. L., & Lewis, G. S. (1993). Arachidonic acid metabolism during early development of ovine embryos: A possible relationship to shedding of the zona pellucida. Prostaglandins, 45(6), 557-569. doi:10.1016/0090-6980(93)90019-4Feuer, S. K., Liu, X., Donjacour, A., Simbulan, R., Maltepe, E., & Rinaudo, P. (2017). Transcriptional signatures throughout development: the effects of mouse embryo manipulation in vitro. Reproduction, 153(1), 107-122. doi:10.1530/rep-16-0473Feuer, S. K., Donjacour, A., Simbulan, R. K., Lin, W., Liu, X., Maltepe, E., & Rinaudo, P. F. (2014). Sexually Dimorphic Effect of In Vitro Fertilization (IVF) on Adult Mouse Fat and Liver Metabolomes. Endocrinology, 155(11), 4554-4567. doi:10.1210/en.2014-1465Wang, L.-Y., Le, F., Wang, N., Li, L., Liu, X.-Z., Zheng, Y.-M., … Jin, F. (2013). Alteration of fatty acid metabolism in the liver, adipose tissue, and testis of male mice conceived through assisted reproductive technologies: fatty acid metabolism in ART mice. Lipids in Health and Disease, 12(1). doi:10.1186/1476-511x-12-5Leese, H. J., Guerif, F., Allgar, V., Brison, D. R., Lundin, K., & Sturmey, R. G. (2016). Biological optimization, the Goldilocks principle, and how much islagomin the preimplantation embryo. Molecular Reproduction and Development, 83(9), 748-754. doi:10.1002/mrd.22684Gándara, L., & Wappner, P. (2018). Metabo-Devo: A metabolic perspective of development. Mechanisms of Development, 154, 12-23. doi:10.1016/j.mod.2018.02.004Viudes‐de‐Castro, M. P., Marco‐Jiménez, F., Más Pellicer, A., García‐Domínguez, X., Talaván, A. M., & Vicente, J. S. (2019). A single injection of corifollitropin alfa supplemented with human chorionic gonadotropin increases follicular recruitment and transferable embryos in the rabbit. Reproduction in Domestic Animals, 54(4), 696-701. doi:10.1111/rda.13411Vicente, J. S., & García-Ximénez, F. (1994). Osmotic and cryoprotective effects of a mixture of DMSO and ethylene glycol on rabbit morulae. Theriogenology, 42(7), 1205-1215. doi:10.1016/0093-691x(94)90869-9Vicente, J.-S., Viudes-de-Castro, M.-P., & García, M.-L. (1999). In vivo survival rate of rabbit morulae after vitrification in a medium without serum protein. Reproduction Nutrition Development, 39(5-6), 657-662. doi:10.1051/rnd:19990511Garcia-Dominguez, X., Marco-Jimenez, F., Viudes-de-Castro, M. P., & Vicente, J. S. (2019). Minimally Invasive Embryo Transfer and Embryo Vitrification at the Optimal Embryo Stage in Rabbit Model. Journal of Visualized Experiments, (147). doi:10.3791/58055Besenfelder, U., & Brem, G. (1993). Laparoscopic embryo transfer in rabbits. Reproduction, 99(1), 53-56. doi:10.1530/jrf.0.0990053Diretto, G., Rubio-Moraga, A., Argandoña, J., Castillo, P., Gómez-Gómez, L., & Ahrazem, O. (2017). Tissue-Specific Accumulation of Sulfur Compounds and Saponins in Different Parts of Garlic Cloves from Purple and White Ecotypes. Molecules, 22(8), 1359. doi:10.3390/molecules22081359Cappelli, G., Giovannini, D., Basso, A. L., Demurtas, O. C., Diretto, G., Santi, C., … Mariani, F. (2018). A Corylus avellana L. extract enhances human macrophage bactericidal response against Staphylococcus aureus by increasing the expression of anti-inflammatory and iron metabolism genes. Journal of Functional Foods, 45, 499-511. doi:10.1016/j.jff.2018.04.007Di Meo, F., Aversano, R., Diretto, G., Demurtas, O. C., Villano, C., Cozzolino, S., … Crispi, S. (2019). Anti-cancer activity of grape seed semi-polar extracts in human mesothelioma cell lines. Journal of Functional Foods, 61, 103515. doi:10.1016/j.jff.2019.103515Fiore, A., Dall’Osto, L., Cazzaniga, S., Diretto, G., Giuliano, G., & Bassi, R. (2012). A quadruple mutant of Arabidopsis reveals a β-carotene hydroxylation activity for LUT1/CYP97C1 and a regulatory role of xanthophylls on determination of the PSI/PSII ratio. BMC Plant Biology, 12(1). doi:10.1186/1471-2229-12-50Rambla, J. L., Trapero-Mozos, A., Diretto, G., Rubio-Moraga, A., Granell, A., Gómez-Gómez, L., & Ahrazem, O. (2016). Gene-Metabolite Networks of Volatile Metabolism in Airen and Tempranillo Grape Cultivars Revealed a Distinct Mechanism of Aroma Bouquet Production. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01619Sulli, M., Mandolino, G., Sturaro, M., Onofri, C., Diretto, G., Parisi, B., & Giuliano, G. (2017). Molecular and biochemical characterization of a potato collection with contrasting tuber carotenoid content. PLOS ONE, 12(9), e0184143. doi:10.1371/journal.pone.0184143Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289-300. doi:10.1111/j.2517-6161.1995.tb02031.xGarcia-Dominguez, X., Marco-Jiménez, F., Peñaranda, D. S., Diretto, G., García-Carpintero, V., Cañizares, J., & Vicente, J. S. (2020). Long-term and transgenerational phenotypic, transcriptional and metabolic effects in rabbit males born following vitrified embryo transfer. Scientific Reports, 10(1). doi:10.1038/s41598-020-68195-
    corecore