16 research outputs found

    A multicarotenoid beadlet for human nutrition - proof of concept of in vitro timed release

    No full text
    Since the 1980's when the predominate focus of study and use of carotenoids in human nutritional formulations was solely on beta-carotene, there has been a steady increase in research aimed to understand the role of a wide variety of carotenoids in human health. This work has increasingly demonstrated the benefits of a number of carotenoids, and there has been a corresponding increase in the number of carotenoids provided in nutritional supplements (multicarotenoids). Numerous published observations in both human and animal studies suggest significant interaction and competition between various carotenoids during absorption and metabolism, resulting in the inhibition of uptake of one over the other. This competition has the end result of reducing the beneficial effects of the inhibited carotenoid. To limit such competition and maximize carotenoid uptakes, a layered beadlet was designed to release a defined ratio of carotenoids sequentially. Preliminary dissolution testing is presented showing the release profile in simulated digestive conditions of a combination of beta-carotene, alpha carotene, lutein, zeaxanthin, lycopene and astaxanthin derived from natural sources. Comparison is made to an immediate release beadlet formulation using the same combination of carotenoids. These results will be used to guide proof of concept clinical testing for effectiveness in humans

    Evaluation of the bioaccessibility of a carotenoid beadlet blend using an in vitro system mimicking the upper gastrointestinal tract

    No full text
    Abstract The release characteristics of a unique blend of carotenoid beadlets designed to increase bioavailability were tested using the dynamic gastrointestinal model TIM‐1. Individual carotenoid bioaccessibility peaks were observed over approximately 3–4 hr in the order of lutein and zeaxanthin first, followed by lycopene, and then finally α‐ and β‐carotene; when tested as a beadlet blend or when the beadlets were compressed into tablets. Bioaccessibility measurements of 7%–20% were similar to those previously reported in literature and comparable between the two formulations, beadlet blend and tablet formulations. Total recovery of carotenoids from all compartments ranged from 70% to 90% for all carotenoids, except lycopene where almost 50% was unrecoverable after digestion in the TIM system

    Evidence for decreased interaction and improved carotenoid bioavailability by sequential delivery of a supplement

    No full text
    Despite the notable health benefits of carotenoids for human health, the majority of human diets worldwide are repeatedly shown to be inadequate in intake of carotenoid‐rich fruits and vegetables, according to current health recommendations. To address this deficit, strategies designed to increase dietary intakes and subsequent plasma levels of carotenoids are warranted. When mixed carotenoids are delivered into the intestinal tract simultaneously, competition occurs for micelle formation and absorption, affecting carotenoid bioavailability. Previously, we tested the in vitro viability of a carotenoid mix designed to deliver individual carotenoids sequentially spaced from one another over the 6 hr transit time of the human upper gastrointestinal system. We hypothesized that temporally and spatially separating the individual carotenoids would reduce competition for micelle formation, improve uptake, and maximize efficacy. Here, we test this hypothesis in a double‐blind, repeated‐measure, cross‐over human study with 12 subjects by comparing the change of plasma carotenoid levels for 8 hr after oral doses of a sequentially spaced carotenoid mix, to a matched mix without sequential spacing. We find the carotenoid change from baseline, measured as area under the curve, is increased following consumption of the sequentially spaced mix compared to concomitant carotenoids delivery. These results demonstrate reduced interaction and regulation between the sequentially spaced carotenoids, suggesting improved bioavailability from a novel sequentially spaced carotenoid mix

    Detection of neuronal activity and metabolism in a model of dehydration-induced anorexia in rats at 14.1 T using manganese-enhanced MRI and 1H MRS.

    Get PDF
    In this study, hypothalamic activation was performed by dehydration-induced anorexia (DIA) and overnight food suppression (OFS) in female rats. The assessment of the hypothalamic response to these challenges by manganese-enhanced MRI showed increased neuronal activity in the paraventricular nuclei (PVN) and lateral hypothalamus (LH), both known to be areas involved in the regulation of food intake. The effects of DIA and OFS were compared by generating T-score maps. Increased neuronal activation was detected in the PVN and LH of DIA rats relative to OFS rats. In addition, the neurochemical profile of the PVN and LH were measured by (1) H MRS at 14.1T. Significant increases in metabolite levels were measured in DIA and OFS relative to control rats. Statistically significant increases in γ-aminobutyric acid were found in DIA (p=0.0007) and OFS (p<0.001) relative to control rats. Lactate increased significantly in DIA (p=0.03), but not in OFS, rats. This work shows that manganese-enhanced MRI coupled to (1) H MRS at high field is a promising noninvasive method for the investigation of the neural pathways and mechanisms involved in the control of food intake, in the autonomic and endocrine control of energy metabolism and in the regulation of body weight
    corecore