217 research outputs found

    Kinetics and thermodynamics of the hydroxylation products in the photodegradation of the herbicide Metolachlor

    Get PDF
    Electronic structure calculations have been performed to determine the thermochemistry and kinetics of the reaction between OH and the radicals of the S enantiomer of the herbicide Metolachlor, 2-chloro-N-(2-methyl-6-ethylphenyl)-N(2-methoxy-1-methylethyl) acetamide (MC), produced by photoinduced breaking of the C–Cl bond. Both density functional and ab initio composite methods were employed to calculate the structure of reactants, intermediates, transition states and products, in gas phase and in aqueous solution. The expected relative abundance of each product was calculated and compared to the experimentally observed concentrations. It is shown that a combination of thermodynamic and kinetic characteristics interplay to produce the expected theoretical abundances, which turn out to be in agreement with the experimentally observed distribution of products

    Corrosion protection of hot dip galvanized steel in mortar

    Get PDF
    Corrosion of steel in concrete is one of the major causes of structure degradation, requiring expensive maintenance. The using of hot dip galvanized steel (HDGS) has been recognized as one effective measure to increase the service life of reinforced concrete structures in marine environmental. However, HDGS corrodes in contact with high alkaline environment of fresh concrete. Although this initial corrosion process allows the formation of a protecting layer barrier, the corrosion that occurs initially is harmful and chromate conversion layers are usually used to prevent it. Due to toxicity of Cr(VI), these kinds of pre-treatments have been forbidden and hybrid coatings have been proposed as alternatives [1-3]. To evaluate the performance of these coatings, beyond the laboratory characterization, in situ tests in real conditions should be performed. An electrochemical system to measure the macrocell current density (igal) was designed to evaluate the degradation of HDGS coated samples with different organic-inorganic hybrid films, embedded in mortar during 70 days, using an automatic data acquisition system. This system revealed to be feasible and highly sensitive to coatings degradation. Also, allow distinguishing different hybrid coatings with different thicknesses.The authors would like to gratefully acknowledge the financial support from Fundação para a Ciência e Tecnologia (FCT) for the PhD grant SFRH/BD/62601/2009 and the financial support by Centro de Química [project F-COMP-01-0124-FEDER-022716 (ref. FCT Pest-C/Qui/UI0686/2011)-FEDER-COMPETE]. The authors would also like to thank Hugo Marques Gomes for assisting in the schematic representations.info:eu-repo/semantics/publishedVersio

    A reinvestigation of the deceptively simple reaction of toluene with OH, and the fate of the benzyl radical : a combined thermodynamic and kinetic study on the competition between OH-addition and H-abstraction reactions

    Get PDF
    This work reports density functional and composite model chemistry calculations performed on the reactions of toluene with the hydroxyl radical. Both the experimentally observed H-abstraction from the methyl group and possible OH additions to the phenyl ring were investigated. Reaction enthalpies and barrier heights suggest that H-abstraction is more favorable than OH-addition to the ring. The calculated reaction rates at room temperature and the radical intermediate product fractions support this view. At first sight, this might seem to disagree with the fact that, under most experimental conditions, cresols are observed in a larger concentration than benzaldehyde. Since the accepted mechanism for benzaldehyde formation involves H-abstraction, a contradiction arises that calls for a more elaborate explanation. In this first exploratory study, we provide evidence that support the preference of H-abstraction over OH addition and present an alternative mechanism which shows that cresols can be actually produced also through H-abstraction and not only from OH-addition, thus justifying the larger proportion of cresols than benzaldehyde among the products

    Living on the edge: Biofilms developing in oscillating environmental conditions

    Get PDF
    For the first time, the densities and diversity of microorganisms developed on ocean gliders were investigated using flow cytometry and Illumina MiSeq sequencing of 16S and 18S rRNA genes. Ocean gliders are autonomous buoyancy-driven underwater vehicles, equipped with sensors continuously recording physical, chemical, and biological parameters. Microbial biofilms were investigated on unprotected parts of the glider and surfaces coated with base, biocidal and chitosan paints. Biofilms on the glider were exposed to periodical oscillations of salinity, oxygen, temperature, pressure, depth and light, due to periodic ascending and descending of the vehicle. Among the unprotected surfaces, the highest microbial abundance was observed on the bottom of the glider’s body, while the lowest density was recorded on the glider’s nose. Antifouling paints had the lowest densities of microorganisms. Multidimensional analysis showed that the microbial communities formed on unprotected parts of the glider were significantly different from those on biocidal paint and in seawater

    microRNA-132 regulates gene expression programs involved in microglial homeostasis

    Get PDF
    microRNA-132 (miR-132), a known neuronal regulator, is one of the most robustly downregulated microRNAs (miRNAs) in the brain of Alzheimer's disease (AD) patients. Increasing miR-132 in AD mouse brain ameliorates amyloid and Tau pathologies, and also restores adult hippocampal neurogenesis and memory deficits. However, the functional pleiotropy of miRNAs requires in-depth analysis of the effects of miR-132 supplementation before it can be moved forward for AD therapy. We employ here miR-132 loss- and gain-of-function approaches using single-cell transcriptomics, proteomics, and in silico AGO-CLIP datasets to identify molecular pathways targeted by miR-132 in mouse hippocampus. We find that miR-132 modulation significantly affects the transition of microglia from a disease-associated to a homeostatic cell state. We confirm the regulatory role of miR-132 in shifting microglial cell states using human microglial cultures derived from induced pluripotent stem cells

    Phenolic composition and antioxidant activity of Rocha pear and other pear cultivars: a comparative study

    Get PDF
    The phenolic profile and the antioxidant activity of Rocha pear, a Portuguese pear cultivar, were determined and compared with the commercially available pear varieties Cornice, Abate, General Leclerc and Passe Crassane. Phenolic composition of the methanolic extracts of these pears was determined by high performance liquid chromatography with diode array detection (HPLC-DAD), while antioxidant activities were evaluated using three complementary test systems: DPPH radical scavenging activity, ferric reducing power capacity and beta-carotene/linoleic acid bleaching assay. When compared to the studied varieties, Rocha pear (peel and flesh) presented the highest content of total phenolics. Among them, chlorogenic, syringic, ferulic and coumaric acids, arbutin and (-)-epicatechin were detected as major components. In addition, among the tested varieties, Rocha pear presented the best antioxidant activities in the DPPH and ferric reducing power assays.Associação Nacional de Produtores de Pêra Rocha; Fundação para a Ciência e Tecnologia (FCT

    A Galvanic Sensor for Monitoring the Corrosion Condition of the Concrete Reinforcing Steel: Relationship Between the Galvanic and the Corrosion Currents

    Get PDF
    This work reports a study carried out on the design and performance of galvanic and polarization resistance sensors to be embedded in concrete systems for permanent monitoring of the corrosion condition of reinforcing steel, aiming to establish a correlation between the galvanic currents, Igal, and the corrosion currents, Icorr, estimated from the polarization resistance, Rp. Sensors have been tested in saturated Ca(OH)2 aqueous solutions, under a variety of conditions, simulating the most important parameters that can accelerate the corrosion of concrete reinforcing steel, such as carbonation, ingress of chloride ions, presence or absence of O2. For all the conditions, the influence of temperature (20 to 55 °C) has also been considered. From this study, it could be concluded that the galvanic currents are sensitive to the various parameters following a trend similar to that of the Rp values. A relationship between the galvanic and the corrosion current densities was obtained and the limiting values of the Igal, indicative of the state condition of the reinforcing steel for the designed sensor, were established

    MEG3 activates necroptosis in human neuron xenografts modeling Alzheimer’s disease

    Get PDF
    Neuronal cell loss is a defining feature of Alzheimer’s disease (AD), but the underlying mechanisms remain unclear. We xenografted human or mouse neurons into the brain of a mouse model of AD. Only human neurons displayed tangles, Gallyas silver staining, granulovacuolar neurodegeneration (GVD), phosphorylated tau blood biomarkers, and considerable neuronal cell loss. The long noncoding RNA MEG3 was strongly up-regulated in human neurons. This neuron-specific long noncoding RNA is also up-regulated in AD patients. MEG3 expression alone was sufficient to induce necroptosis in human neurons in vitro. Down-regulation of MEG3 and inhibition of necroptosis using pharmacological or genetic manipulation of receptor-interacting protein kinase 1 (RIPK1), RIPK3, or mixed lineage kinase domain-like protein (MLKL) rescued neuronal cell loss in xenografted human neurons. This model suggests potential therapeutic approaches for AD and reveals a human-specific vulnerability to AD

    Phytochemical profile and anticholinesterase and antimicobial activities of supercritical versus conventional extracts of Satureja montana

    Get PDF
    Winter savory Satureja montana is a medicinal herb used in traditional gastronomy for seasoning meats and salads. This study reports a comparison between conventional (hydrodistillation, HID, and Soxhlet extraction, SE) and alternative (supercritical fluid extraction, SFE) extraction methods to assess the best option to obtain bioactive compounds. Two different types of extracts were tested, the volatile (SFE-90 bar, second separator vs HID) and the nonvolatile fractions (SFE-250 bar, first and second separator vs SE). The inhibitory activity over acetyl- and butyrylcholinesterase by S. montana extracts was assessed as a potential indicator for the control of Alzheimer's disease. The supercritical nonvolatile fractions, which showed the highest content of (+)-catechin, chlorogenic, vanillic, and protocatechuic acids, also inhibited selectively and significantly butyrylcholinesterase, whereas the nonvolatile conventional extract did not affect this enzyme. Microbial susceptibility tests revealed the great potential of S. montana volatile supercritical fluid extract for the growth control and inactivation of Bacillus subtilis and Bacillus cereus, showing some activity against Botrytis spp. and Pyricularia oryzae. Although some studies were carried out on S. montana, the phytochemical analysis together with the biological properties, namely, the anticholinesterase and antimicrobial activities of the plant nonvolatile and volatile supercritical fluid extracts, are described herein for the first time
    • …
    corecore