7 research outputs found

    Comparative genomics in the triticeae

    No full text
    International audienceThe genomes of grasses are very different in terms of size, ploidy level and chromosome number. Among them, the Triticeae species (wheat, barley, rye) have some of the largest and complex genomes. Comparative mapping studies between rice, maize, sorghum, barley and wheat have pioneered the field of plant comparative genomics a decade ago. They showed that the linear order (colinearity) of genetic markers and genes is very well conserved opening the way to accelerated map-based cloning and defining rice as a model for grasses. More recently, the availability of BAC libraries and large sets of genomic sequences including the completion of the rice genome have permitted micro-colinearity studies that revealed rearrangements between the grass genomes and provided some insights into mechanisms that have shaped their genome during evolution. This review summarizes a decade of comparative genomics Studies In grasses with a special emphasis on the wheat and barley genomes

    Genomics of tolerance to abiotic stress in the Triticeae

    No full text
    Genomics platforms offer unprecedented opportunities to identify, select and in some cases clone the genes and the quantitative trait loci (QTLs) that govern the tolerance of Triticeae to abiotic stresses and, consequently, grain yield. Transcriptome profiling and the other \u201comics\u201d platforms provide further information to unravel gene functions and validate the role of candidate genes. This review provides a synopsis of the main results on the studies that have investigated the genomics of Triticeae crops under conditions of abiotic constraints. With their rich biodiversity and high functional plasticity in response to environmental stresses, Triticeae crops provide an ideal ground for taking full advantage of the opportunities offered by genomics approaches. Ultimately, the practical impact of the knowledge and materials generated through genomics-based approaches will depend on their integration and exploitation within the extant breeding programs

    Genomics of Tolerance to Abiotic Stress in the Triticeae

    No full text
    corecore