8 research outputs found

    Area-selective electrodeposition of micro islands for CuInSe2-based photovoltaics

    Get PDF
    For mass fabrication of highly-efficient photovoltaic modules based on Cu(In,Ga)Se 2 (CIGSe) absorber layers the availability and cost of the critical raw materials In and Ga present a potential bottleneck. The micro-concentrator solar cell concept provides a solution by using micro lenses to concentrate incoming sun light on an array of micro-sized CIGSe solar cells. The challenge is to fabricate CIGSe micro islands in exactly the desired positions using only the required material. Here, we analyze the area-selective electrodeposition of CuInSe 2 into holes in an insulating SiO 2 template layer as a material-efficient fabrication approach. We observe that the deposition process shows a strong dependence on the hole size, with a faster deposition around the hole perimeter. Based on a model developed for electrochemical reactions at ultra-micro electrodes, we develop numerical simulations for the electrochemical deposition process. The simulations consider the changing micro-electrode geometry throughout the deposition process, and provide a reasonable fit to the experimental data. Finally, it is shown that CuInSe 2 micro solar cells fabricated by electrodeposition reach efficiencies of 4.8% under 1 sun, providing a proof-of-concept demonstration meriting further development

    Will ultrathin CIGS solar cells overtake the champion thin-film cells? Updated SCAPS baseline models reveal main differences between ultrathin and standard CIGS

    Get PDF
    Cu(In,Ga)Se2 (CIGS) solar cells are amongst the best performing thin-film technologies, with the latest performance gains being mainly due to recent years improvements obtained with post-deposition treatments (PDT). Moreover, thinning of the absorber layer down to sub-micrometre values (ultrathin absorbers) is of extreme importance for CIGS to be even more cost-effective and sustainable. However, electrical and optical limitations, such as rear interface recombination and insufficient light absorption, prevent the widespread implementation of ultrathin CIGS devices. The recent electrical CIGS simulation baseline models have failed to keep up with the experimental developments. Here an updated and experimentally based baseline model for electrical simulations in the Solar Cell Capacitor Simulator (SCAPS) software is presented and discussed with the incorporation of the PDT effects and increased optical accuracy with the support from Finite-Difference Time-Domain (FDTD) simulation results. Furthermore, a champion solar cell with an equivalent architecture validates the developed thin-film model. The baseline model is also applied to ultrathin CIGS solar cell devices, validated with the ultrathin champion cell. Ultimately, these ultrathin models pave the way for an ultrathin baseline model. Simulations results reveal that addressing these absorbers' inherent limitations makes it possible to achieve an ultrathin solar cell with at least 21.0% power conversion efficiency, with open-circuit voltage values even higher than the recent thin-film champion cells.This work was supported by the Fundação para a Ciência e Tecno-logia (FCT) grant numbers DFA/BD/7073/2020, DFA/BD/4564/2020, SFRH/BD/146776/2019, IF/00133/2015, UIDB/50025/2020, UIDP/50025/2020, UIDB/04730/2020, and UIDP/04730/2020. The authors want to acknowledge the funding from the project NovaCell (PTDC/ CTM-CTM/28075/2017). The authors also acknowledge the financial support of the project Baterias 2030, with the reference POCI-01-0247-FEDER-046109, co-funded by Operational Programme for Competitiveness and Internationalization (COMPETE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDFinfo:eu-repo/semantics/submittedVersio

    Understanding the AC Equivalent Circuit Response of Ultrathin Cu(In,Ga)Se2 Solar Cells

    Get PDF
    This paper aims to study the ac electrical response of standard-thick, ultrathin, and passivated ultrathin Cu(In,Ga)Se 2 (CIGS) solar cells. Ultrathin CIGS is desired to reduce production costs of CIGS solar cells. Equivalent circuits for modeling the behavior of each type of solar cells in ac regime are based on admittance measurements. It is of the utmost importance to understand the ac electrical behavior of each device, as the electrical behavior of ultrathin and passivated ultrathin CIGS devices is yet to be fully understood. The analysis shows a simpler ac equivalent circuit for the ultrathin device without passivation layer, which might be explained by the lowered bulk recombination for thin-film CIGS solar cells when compared with reference thick ones. Moreover, it is observed an increase in shunt resistance for the passivated ultrathin device, which strengthens the importance of passivation for shunts mitigation when compared with unpassivated devices

    CdS versus ZnSnO buffer layers for a CIGS solar cell: a depth-resolved analysis using the muon probe

    Get PDF
    The influence of a buffer layer in the surface of a Cu(In,Ga)Se2 (CIGS) solar cell material is studied using implanted positive muons as a probe. A depth resolved analysis of the muon data suggests that both CdS and ZnSnO reduce the width of a defect layer present at the CIGS surface to about half its original value. Additionaly, CdS is able to reduce the intensity of the distur¬bance in the defected region, possibly due to a surface reconstrution in CIGS

    CdS versus ZnSnO buffer layers for a CIGS solar cell: a depth-resolved analysis using the muon probe

    No full text
    The influence of a buffer layer in the surface of a Cu(In,Ga)Se2 (CIGS) solar cell material is studied using implanted positive muons as a probe. A depth resolved analysis of the muon data suggests that both CdS and ZnSnO reduce the width of a defect layer present at the CIGS surface to about half its original value. Additionaly, CdS is able to reduce the intensity of the distur¬bance in the defected region, possibly due to a surface reconstrution in CIGS

    CuInSe2 quantum dots grown by molecular beam epitaxy on amorphous SiO2 surfaces

    No full text
    The currently most efficient polycrystalline solar cells are based on the Cu(In,Ga)Se2 compound as a light absorption layer. However, in view of new concepts of nanostructured solar cells, CuInSe2 nanostructures are of high interest. In this work, we report CuInSe2 nanodots grown through a vacuum-compatible co-evaporation growth process on an amorphous surface. The density, mean size, and peak optical emission energy of the nanodots can be controlled by changing the growth temperature. Scanning transmission electron microscopy measurements confirmed the crystallinity of the nanodots as well as chemical composition and structure compatible with tetragonal CuInSe2. Photoluminescence measurements of CdS-passivated nanodots showed that the nanodots are optoelectronically active with a broad emission extending to energies above the CuInSe2 bulk bandgap and in agreement with the distribution of sizes. A blue-shift of the luminescence is observed as the average size of the nanodots gets smaller, evidencing quantum confinement in all samples. By using simple quantum confinement calculations, we correlate the photoluminescence peak emission energy with the average size of the nanodots

    Optimization of Back Contact Grid Size in Al2O3-Rear-Passivated Ultrathin CIGS PV Cells by 2-D Simulations

    Get PDF
    We present a simulation strategy using ATLAS-2D to optimize the back-contact hole grid (i.e., size and pitch of openings) of the Al2O3-rear-passivation layer in ultrathin Cu(In,Ga)Se2 photovoltaic cells.We first discuss and compare our simulation model with a series of experimental nonpassivated and passivated cells to decouple the crucial passivation parameters. The simulation results followthe experimental trends, highlighting the beneficial effects of the passivation on the cell performances. Furthermore, it stresses the influence of the passivation quality at the Al2O3/Cu(In,Ga)Se2 (CIGS) interface and of the contact resistance at the Mo/CIGS interface within the openings. Further simulations quantify significant improvements in short-circuit current and open-circuit voltage for different sizes of openings in the Al2O3 layer, relative to an excellent passivation quality (i.e., high density of negative charges in the passivation layer). However, a degradation is predicted for a poor passivation (i.e., low density of such charges) or a high contact resistance. Consequently, we point out an optimum in efficiency when varying the opening widths at fixed hole-pitch and fixed contact resistance. At equivalent contact resistance, simulations predict that the sizes of the pitch and openings can be increased without optimal performance losses when maintaining a width to pitch ratio around 0.2. This simulation trends have been confirmed by a series of experiments, indicating that it is crucial to care about the dimensions of the opening grid and the contact resistance of passivated cells. These simulation results provide significant insights for optimal cell design and characterizations of passivated UT-CIGS PV cells
    corecore