51 research outputs found

    Photosystem II Repair and Plant Immunity: Lessons Learned from Arabidopsis Mutant Lacking the THYLAKOID LUMEN PROTEIN 18.3

    Get PDF
    Chloroplasts play an important role in the cellular sensing of abiotic and biotic stress. Signals originating from photosynthetic light reactions, in the form of redox and pH changes, accumulation of reactive oxygen and electrophile species or stromal metabolites are of key importance in chloroplast retrograde signaling. These signals initiate plant acclimation responses to both abiotic and biotic stresses. To reveal the molecular responses activated by rapid fluctuations in growth light intensity, gene expression analysis was performed with Arabidopsis thaliana wild type and the tlp18.3 mutant plants, the latter showing a stunted growth phenotype under fluctuating light conditions (Biochem. J, 406, 415-425). Expression pattern of genes encoding components of the photosynthetic electron transfer chain did not differ between fluctuating and constant light conditions, neither in wild type nor in tlp18.3 plants, and the composition of the thylakoid membrane protein complexes likewise remained unchanged. Nevertheless, the fluctuating light conditions repressed in wild-type plants a broad spectrum of genes involved in immune responses, which likely resulted from shade-avoidance responses and their intermixing with hormonal signaling. On the contrary, in the tlp18.3 mutant plants there was an imperfect repression of defense-related transcripts upon growth under fluctuating light, possibly by signals originating from minor malfunction of the photosystem II (PSII) repair cycle, which directly or indirectly modulated the transcript abundances of genes related to light perception via phytochromes. Consequently, a strong allocation of resources to defense reactions in the tlp18.3 mutant plants presumably results in the stunted growth phenotype under fluctuating light.</p

    Genetic Diversity Analysis of Sapindus in China and Extraction of a Core Germplasm Collection Using EST-SSR Markers

    Get PDF
    Sapindus is an important forest tree genus with utilization in biodiesel, biomedicine, and it harbors great potential for biochemical engineering applications. For advanced breeding of Sapindus, it is necessary to evaluate the genetic diversity and construct a rationally designed core germplasm collection. In this study, the genetic diversity and population structure of Sapindus were conducted with 18 expressed sequence tag-simple sequence repeat (EST-SSR) markers in order to establish a core germplasm collection from 161 Sapindus accessions. The population of Sapindus showed high genetic diversity and significant population structure. Interspecific genetic variation was significantly higher than intraspecific variation in the Sapindus mukorossi, Sapindus delavayi, and combined Sapindus rarak plus Sapindus rarak var. velutinus populations. S. mukorossi had abundant genetic variation and showed a specific pattern of geographical variation, whereas S. delavayi, S. rarak, and S. rarak var. velutinus showed less intraspecific variation. A core germplasm collection was created that contained 40% of genetic variation in the initial population, comprising 53 S. mukorossi and nine S. delavayi lineages, as well as single representatives of S. rarak and S. rarak var. velutinus. These results provide a germplasm basis and theoretical rationale for the efficient management, conservation, and utilization of Sapindus, as well as genetic resources for joint genomics research in the future.Peer reviewe

    Tipping elements in the human intestinal ecosystem

    Get PDF
    The microbial communities living in the human intestine can have profound impact on our well-being and health. However, we have limited understanding of the mechanisms that control this complex ecosystem. Here, based on a deep phylogenetic analysis of the intestinal microbiota in a thousand western adults, we identify groups of bacteria that exhibit robust bistable abundance distributions. These bacteria are either abundant or nearly absent in most individuals, and exhibit decreased temporal stability at the intermediate abundance range. The abundances of these bimodally distributed bacteria vary independently, and their abundance distributions are not affected by short-term dietary interventions. However, their contrasting alternative states are associated with host factors such as ageing and overweight. We propose that the bistable groups reflect tipping elements of the intestinal microbiota, whose critical transitions may have profound health implications and diagnostic potential

    Cost-Effective Marine Protection - A Pragmatic Approach

    Get PDF
    This paper puts forward a framework for probabilistic and holistic cost-effectiveness analysis to provide support in selecting the least-cost set of measures to reach a multidimensional environmental objective. Following the principles of ecosystem-based management, the framework includes a flexible methodology for deriving and populating criteria for effectiveness and costs and analyzing complex ecological-economic trade-offs under uncertainty. The framework is applied in the development of the Finnish Programme of Measures (PoM) for reaching the targets of the EU Marine Strategy Framework Directive (MSFD). The numerical results demonstrate that substantial cost savings can be realized from careful consideration of the costs and multiple effects of management measures. If adopted, the proposed PoM would yield improvements in the state of the Baltic Sea, but the overall objective of the MSFD would not be reached by the target year of 2020; for various environmental and administrative reasons, it would take longer for most measures to take full effect.Peer reviewe

    Transcriptional regulation of the CRK/DUF26 group of Receptor-like protein kinases by ozone and plant hormones in Arabidopsis

    Get PDF
    Conclusions: Combining expression analysis from multiple treatments with mutants altered in hormone biosynthesis or signalling suggest a model in which O(3) and salicylic acid (SA) activate separate signaling pathways that exhibit negative crosstalk. Although O(3) is classified as an abiotic stress to plants, transcriptional profiling of CRKs showed strong similarities between the O(3) and biotic stress responses

    Interaction of methyl viologen-induced chloroplast and mitochondrial signalling in Arabidopsis

    Get PDF
    Reactive oxygen species (ROS) are key signalling intermediates in plant metabolism, defence, and stress adaptation. In plants, both the chloroplast and mitochondria are centres of metabolic control and ROS production, which coordinate stress responses in other cell compartments. The herbicide and experimental tool, methyl viologen (MV) induces ROS generation in the chloroplast under illumination, but is also toxic in non-photosynthetic organisms. We used MV to probe plant ROS signalling in compartments other than the chloroplast. Taking a genetic approach in the model plant Arabidopsis (Arabidopsis thaliana), we used natural variation, QTL mapping, and mutant studies with MV in the light, but also under dark conditions, when the chloroplast electron transport is inactive. These studies revealed a light-independent MV-induced ROS-signalling pathway, suggesting mitochondrial involvement. Mitochondrial Mn SUPEROXIDE DISMUTASE was required for ROS-tolerance and the effect of MV was enhanced by exogenous sugar, providing further evidence for the role of mitochondria. Mutant and hormone feeding assays revealed roles for stress hormones in organellar ROS-responses. The radical-induced cell death1 mutant, which is tolerant to MV-induced ROS and exhibits altered mitochondrial signalling, was used to probe interactions between organelles. Our studies suggest that mitochondria are involved in the response to ROS induced by MV in plants.Peer reviewe
    corecore