202 research outputs found

    The North Atlantic circulation: Combining simplified dynamics with hydrographic data

    Get PDF
    We estimate the time-averaged velocity field in the North Atlantic from observations of density, wind stress and bottom topography. The flow is assumed geostrophic, with prescribed Ekman pumping at the surface, and no normal component at the bottom. These data and dynamics determine velocity to within an arbitrary function of (Coriolis parameter)/(ocean depth), which we call the “dynamical free mode.” The free mode is selected to minimize mixing of potential density at mid-depth. This tracer-conservation criterion serves as a relatively weak constraint on the calculation. Estimates of vertical velocity are particularly sensitive to variations in the free mode and to errors in density. In contrast, horizontal velocities are relatively robust. Below the thermocline, we predict a strong O (1 cm/sec) westward flow across the entire North Atlantic, in a narrow range of latitude between 25N and 32N. This feature supports the qualitative (and controversial) conjecture by Wüst (1935) of flow along the “Mediterranean Salt Tongue.” Along continental margins and at the Mid-Atlantic Ridge, predicted bottom velocity points along isobaths, with shallow water to the right. These flows agree with many long-term current measurements and with notions of the circulation based on tracer distributions. The results conflict with previous oceanographic-inverse models, which predict mid-depth flows an order of magnitude smaller and often in opposite directions. These discrepancies may be attributable to our relatively strong enforcement of the bottom boundary condition. This involves the plausible, although tenuous, assertion that the flow “feels” only the large-scale features of the bottom topography. Our objective is to investigate the consequences of using this hypothesis to estimate the North Atlantic circulation

    Identification of the relative distribution of rare-earth ions in phosphate glasses

    Get PDF
    The relative distribution of rare-earth ions R3+ (Dy3+ or Ho3+) in the phosphate glass RAl0.30P3.05O9.62 was measured by employing the method of isomorphic substitution in neutron diffraction. It is found that 7.9(7) R-R nearest neighbors reside at 5.62(6) Angstrom in a network made from interlinked PO4 tetrahedra. Provided that the role of Al is explicitly considered, a self-consistent account of the local matrix atom correlations can be developed in which there are 1.68(9) bridging and 2.32(9) terminal oxygen atoms per phosphorus

    Structure of lanthanum and cerium phosphate glasses by the method of isomorphic substitution in neutron diffraction

    Get PDF
    Neutron diffraction was used to measure the total structure factors for several rare-earth ion R3+ (La3+ or Ce3+) phosphate glasses with composition close to RAl0.35P3.24O10.12. By assuming isomorphic structures, difference function methods were employed to separate, essentially, those correlations involving R3+ from the remainder. A self-consistent model of the glass structure was thereby developed in which the Al correlations were taken into explicit account. The glass network was found to be made from interlinked PO4 tetrahedra having 2.2(1) terminal oxygen atoms, OT, at 1.51(1) Angstrom, and 1.8(1) bridging oxygen atoms, OB, at 1.60(1) Angstrom. Rare-earth cations bonded to an average of 7.5(2) OT nearest neighbors in a broad and asymmetric distribution. The Al3+ ion acted as a network modifier and formed OT-A1-OT linkages that helped strengthen the glass. The connectivity of the R-centered coordination polyhedra was quantified in terms of a parameter f(s) and used to develop a model for the dependence on composition of the A1-OT coordination number in R-A1-P-O glasses. By using recent 17 A1 nuclear-magnetic-resonance data, it was shown that this connectivity decreases monotonically with increasing Al content. The chemical durability of the glasses appeared to be at a maximum when the connectivity of the R-centered coordination polyhedra was at a minimum. The relation of f(s) to the glass transition temperature, Tg, was discussed

    Neutron diffraction as a probe of liquid and glass structures under extreme conditions

    Get PDF
    Scanning electron micrograph taken of palladium/platinum coated structures with an FEI Quanta 600 FEG environmental scanning electron microscope

    Structure and triclustering in Ba-Al-O glass

    Get PDF
    Glass-forming ability in the (BaO) x(Al 2O 3) 1-x system (0≤x≤1) was investigated by using the containerless aerodynamic levitation and laser-heating method. The main glass-forming region was found to occur for 0.40(2) ≤x≤ 0.48(2), where there is insufficient oxygen to form an ideal network of corner-sharing AlO 4 tetrahedra in which the oxygen atoms are twofold coordinated, with another narrow glass-forming region at x = 0.62(2) around the eutectic composition. The glass corresponding to x = 0.4 was chosen for further investigation by using both neutron and x-ray diffraction, and a detailed atomistic model was built by applying a combination of molecular dynamics and reverse Monte Carlo methods. The results show a network structure based predominantly on corner-sharing tetrahedral AlO 4 motifs in which triclusters (OAl 3 units formed by three tetrahedral Al atoms sharing a common vertex) play an integral part, with as many as 21% of the oxygen atoms involved in these configurations. The barium ions bind to an average of 7.4 O atoms, most of which are twofold-coordinated bridging oxygen atoms. The larger size of barium compared to calcium narrows the range of glass-forming compositions in alkaline-earth aluminates such that the main glass-forming range corresponds to a regime in which an oxygen-deficient Al-O network is stabilized by the formation of triclusters

    Structural properties of liquid Ge<sub>2</sub>Se<sub>3</sub>: A first-principles study

    Get PDF
    The structural properties of liquid Ge2Se3 were investigated by first-principles molecular dynamics using the Becke-Lee-Yang-Parr scheme for the treatment of the exchange-correlation functional in density functional theory. Our data for the total neutron structure factor and the total pair-distribution function are in excellent agreement with the experimental results. The structure is made predominantly (similar to 61%) from units comprising fourfold coordinated Ge atoms in the form of Ge-GeSe3 or Ge-Se-4 motifs, but there is also a large variety of motifs in which Ge and Se are not fourfold and twofold coordinated, respectively. The miscoordinated atoms and homopolar bonds lead to a highly perturbed tetrahedral network, as reflected by diffusion coefficients that are larger than in the case of liquid GeSe2. The network does, nevertheless, exhibit intermediate range order which is associated with the Ge-Ge correlations and which manifests itself by a first sharp diffraction peak in the total neutron structure factor. The evolution of the properties of Ge-x Se1-x liquids (0 <= x <= 1) with composition is discussed.This work was granted access by GENCI (Grand Equipement National de Calcul Intensif) under allocation 2011095071 to the HPC resources of CCRT/CINES/IDRIS
    • …
    corecore