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Pressure dependent structure of the null-scattering alloy Ti0.676Zr0.324
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The room temperature structure of the alloy Ti0.676Zr0.324 was measured by x-ray diffraction
under compression at pressures up to∼30 GPa. This alloy is used as a construction material in
high-pressure neutron-scattering research, and has a mean coherent neutron scattering length
of zero i.e. it is a so-called ‘null-scattering’ alloy. A broad phase transition was observed from
a hexagonal close-packed (hcp) α-phase to a hexagonal ω-phase, which started at a pressure
of .12 GPa and was completed by ∼25 GPa. The data for the α-phase were fitted by using
a third order Birch-Murnaghan equation of state, giving an isothermal bulk modulus B0 =
87(4) GPa and pressure derivative B′

0 = 6.6(8). The results will help to ensure that accurate
structural information can be gained from in situ high-pressure neutron-diffraction work on
amorphous and liquid materials where the Ti0.676Zr0.324 alloy is used as a gasket material.
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1. Introduction

Titanium and zirconium are miscible and together they form solid solutions over the
entire compositional range [1, 2]. The alloy Ti0.676Zr0.324 is an important construction
material in high-pressure neutron-scattering research where it is used to make containers
and gaskets [3]. One of the motivations for this choice arises from the difference in sign
of the coherent neutron scattering lengths for Ti and Zr: They are −3.438(2) fm and
7.16(3) fm, respectively, so that neutrons scattered by the nuclei of these elements have
opposite phases [4]. The composition of the Ti0.676Zr0.324 alloy therefore leads to a mean
coherent neutron scattering length of zero i.e. it is a so-called ‘null-scattering’ alloy with
a diffraction pattern that should be flat and featureless [5, 6]. In practice, a measured
neutron diffraction pattern will, however, show some structure (Figure 1) that arises from
non-ideal mixing [3, 6].
When investigating the structure of amorphous and liquid materials using in situ high-

pressure neutron diffraction, it is essential to make an accurate correction for the atten-
uation and multiple scattering of a neutron beam by the gasket material. This procedure
requires the number density of the gasket material under pressure [6, 10–12]. It is there-
fore timely to measure the equation of state for the Ti0.676Zr0.324 alloy. Here, we will
use x-ray diffraction to investigate the room temperature structure of this alloy under
compression at pressures up to ∼30 GPa.
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Figure 1. The neutron diffraction pattern (points with vertical error bars) measured at ambient pressure for
a Ti0.676Zr0.324 gasket placed inside the cubic-BN anvils of a Paris-Edinburgh press [3] and mounted on the
instrument D4c [7]. The pattern is plotted as a function of the magnitude of the scattering vector q = (4π/λ) sin θ

where 2θ is the scattering angle and λ (= 0.6947(1) Å) is the incident neutron wavelength [8]. Vertical bars mark
(in ascending order) the 101, 102, 103, 112 and 201 reflections for α-Ti0.676Zr0.324 at a pressure of 1.4 GPa
(corresponding to the lowest pressure data set shown in Figure 2), along with the 111 and 311 reflections for the
cubic-BN anvil material at ambient conditions [9]. The diffraction pattern for the gasket alloy shows small Bragg

peaks and q-dependent structure that arise from non-ideal mixing e.g. from like-atom clustering. The crystallites
in the alloy often have preferred orientations [6].

2. Experimental Methods

A Ti0.676Zr0.324 billet (of composition in mass% given by Ti: 51.5 %, Zr: 48.27 %, O:
0.11 %, C: 0.008 %, N: 0.003 %, H: 0.0014 %, Hf: < 0.0035 %, Fe: 0.10 %) was formed from
sponges of nuclear grade titanium and zirconium using a double vacuum-arc smelting
process. Residual pores formed by gaseous inclusions were subsequently reduced, both in
size and quantity, by employing the technique of hot-isostatic pressing (HIPing) [13] with
argon gas as a pressurising medium at 1850 bar and a temperature of at least 1000 ◦C
(Robert Done, ISIS facility, private communication, 2009).
A flake of swarf cut from the alloy was loaded into a screw-driven symmetric-style

diamond anvil cell (DAC) together with gold powder, a ruby sphere and neon at a
pressure of ∼0.2 GPa. The DAC had 330 µm culets, an inner diameter of 120 µm, and the
gasket thickness at loading was in the range of 35–40 µm. Neon is a pressure-transmitting
medium that provides hydrostatic conditions at pressures up to ∼15 GPa [14]. Beyond
this threshold, the pressure gradients within a DAC are small, giving a <1 % pressure
variation at 50 GPa [14]. Gold was intended for use as a pressure calibrant but, because
of overlap with Bragg peaks from the ω-phase, ruby was used for the determination of
the pressure [15] before and after each run. The mean of these pressure values is quoted
for each state point, and the variation did not exceed 0.2 GPa.
X-ray diffraction patterns were collected on the 16-IDB beamline at the APS using an

incident wavelength of 0.4066(1) Å. A PILATUS 1M-F detector [16] was used for data
collection. The measured two-dimensional diffraction data were integrated using FIT2D
[17] and were refined using the GSAS package [18]. A strained Ti0.676Zr0.324 alloy was
indicated by the breadth of the measured Bragg peaks (Figure 2), even though neon
was used as a pressure-transmitting medium. This strain is likely to result from the
alloying process [3], but the machining procedure used to prepare the sample for the
x-ray diffraction experiment may have also contributed.
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Figure 2. The pressure dependence of the x-ray diffraction patterns measured for the null-scattering alloy
Ti0.676Zr0.324 at ≃24 ◦C. The pressures are indicated by the intercepts of these patterns with the right-hand

ordinate axis. At the base pressure of 1.4 GPa, vertical bars mark (in ascending order) the 100, 002, 101, 102,
110, 103, 200, 112 and 201 reflections for α-Ti0.676Zr0.324 and the 111, 200 and 220 reflections for the gold pres-
sure calibrant. The 111 reflections for gold cannot be resolved because they overlap with Bragg peaks from the
null-scattering alloy, and the pressure dependence of the gold 200 reflections is indicated by the solid light (red)

circles. At the lowest two pressures, the grey shaded areas indicate the intensity scattered from the liquid Ne
pressure-transmitting medium. The signal from this medium is lost as Ne freezes into a quasi-single crystal at
a pressure above 5 GPa, but the signal reappears at 20.6 GPa when the crystal is broken up. At this pressure,
vertical bars mark (in ascending order) the 111 and 200 reflections for Ne and the 001, 101, 110, 200, 111, 201,

210, 002, 102 and 211 reflections for ω-Ti0.676Zr0.324. The pressure dependence of the Ne reflections is indicated
by the solid dark (black) circles.

3. Results

The Ti0.676Zr0.324 alloy crystallises into a hexagonal close-packed (hcp) α-phase at
ambient-pressure, as confirmed by the measured x-ray diffraction patterns (Figure 2).
At a pressure of ∼12 GPa, a transformation to a hexagonal ω-phase [19] was detected,
where the fraction of this phase was ≃10 %. The proportion of ω-phase increased grad-
ually with pressure, and the α → ω phase transformation was completed by ∼24.8 GPa.
In comparison, the onset pressure for the transformation from an hcp α-phase to a
hexagonal ω-phase has been reported to be in the range of 2.2–6.7 GPa for Zr [19, 20],
10.7(7)–11.0(1.5) GPa for the equimolar alloy Ti0.5Zr0.5 [21, 22], and 2.9–11 GPa for Ti
[23]. The onset pressure for a given material depends on factors such as the impurity
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Figure 3. The pressure dependence in Ti0.676Zr0.324 of (i) the lattice parameters a (open squares) and c (closed

squares) for the α-phase and (ii) the lattice parameters a (open circles) and c (closed circles) for the ω-phase. The
error bars are smaller than the symbol sizes.

content and grain size of the metal, and it also depends on the pressure-transmitting
medium employed in an experiment [19, 23, 24]. Coexistence of the α- and ω-phases has
been reported for a pressure range of 10–13 GPa for high-purity nano-crystalline Ti using
a 4:1 methanol:ethanol pressure-transmitting medium [24], and for a pressure range of
10.2–14.7 GPa (4:1 methanol:ethanol), 6.2–14.2 GPa (NaCl), 10.5–14.9 GPa (argon) or
4.9–12.4 GPa (no pressure transmitting medium) for Ti of commercial purity [23], where
the spread in values corresponds to the use of different pressure-transmitting media as
specified in the brackets. For the equimolar alloy Ti0.5Zr0.5, coexistence of the α- and
ω-phases has been reported for a pressure range of 10.7(7)–21.6(7) GPa [22].
The pressure dependence of the lattice parameters for the α- and ω-phases of the

Ti0.676Zr0.324 alloy is shown in Figure 3. The c/a lattice parameter ratio takes, within
the accuracy of the measurements, a nearly constant value of 1.592(2) for the α-phase
and 0.619(1) for the ω-phase (Figure 4). A near constancy of the c/a ratio with pressure
has also been reported for both the α- and ω-phases of Ti [23, 25], Zr [26] and Ti0.5Zr0.5
[21], although an increase of this ratio with pressure has been reported for α-Ti [23].
In the case of the equimolar alloy Ti0.5Zr0.5, the measured c/a ratio is 1.581(5) for the
α-phase and 0.618(2) for the ω-phase [21].
The pressure induced change to the atomic volume V of the Ti0.676Zr0.324 alloy is

shown in Figure 5. The fractional decrease in volume between the α- and ω-phases
∆V/Vα, where Vα is the volume of the α-phase, is about 1.6(2)% at ≃21.5 GPa, which
compares to a measured value of 2.1% in the equimolar alloy Ti0.5Zr0.5 for the onset of
the α → ω transition at 11 GPa [21]. The results for the α-phase were fitted by using a
third order Birch-Murnaghan equation of state as written in the form [27]

FE ≡ p

3fE (1 + 2fE)
5

2

= B0 +
3B0

2

(
B′

0 − 4
)
fE (1)

where FE denotes a ‘normalised stress’, p is the pressure, fE ≡ 1
2

[
(V0/V )

2

3 − 1
]
is the
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Figure 4. The pressure dependence in Ti0.676Zr0.324 of the c/a lattice parameter ratio for the α-phase [open

(black) squares] and for the ω-phase [open (red) circles]. For each phase, the c/a ratio shows little variation with
pressure and the average values are indicated by horizontal broken curves.
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Figure 5. The pressure dependence in Ti0.676Zr0.324 of the atomic volume V for the α-phase [open (black) squares]
and for the ω-phase [open (red) circles]. The error bars are smaller than the symbol sizes.

Eulerian strain, V0 and B0 are the atomic volume and isothermal bulk modulus at zero
pressure, respectively, and B′

0 is the pressure derivative of the isothermal bulk modulus
at zero pressure. A plot of FE versus fE enables B0 and B′

0 to be obtained from a
least-squares fit of the data to a straight line, and an incorrect value for V0 will manifest
itself by an abnormal curvature in the plotted data points at small fE values [27]. Thus,
fitted parameter values of V0 = 19.50(15) Å3, B0 = 87.1(3.7) GPa and B′

0 = 6.58(81) were
obtained. The zero-pressure volume compares to an ambient pressure value of 19.56(2) Å3
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Figure 6. The pressure dependence of the atomic number density n in Ti0.676Zr0.324 for (i) the α-phase [filled

(black) squares] and (ii) the average of the α- and ω-phases in their coexistence region [open (blue) triangles].
The error bars are smaller than the symbol sizes. The solid curve gives the values of n obtained for the α-phase
from a fitted third order Birch-Murnaghan equation of state. The broken curve shows the expectation of Vegard’s

law for the number density of α-Ti0.676Zr0.324 at pressures .5.5 GPa, as calculated by using the measured cell
parameters for α-Ti [25] and α-Zr [29] (see the text).

(corresponding to a mass density of 5.257(6) g/cm3) that was measured by using a
MICRO-ULTRAPYC 1200e He gas pycnometer.
The pressure dependence of the measured atomic number density n for the

Ti0.676Zr0.324 alloy is shown in Figure 6, along with the values obtained for the α-phase
from the fitted Birch-Murnaghan equation of state. The results for the α-phase at pres-
sures .5.5 GPa are compared to those expected from Vegard’s law [28] where, at a
particular pressure, the lattice parameters for an alloy of composition TixZr1−x (0 ≤ x ≤
1) are taken to be a = xaTi + (1− x)aZr and c = xcTi + (1− x)cZr. In these expressions,
aTi and cTi are the lattice parameters for α-Ti [25], and aZr and cZr are the lattice pa-
rameters for α-Zr [29]. For the hcp α-phase of a TixZr1−x alloy, two atoms are contained
within a unit cell of volume Vcell =

(√
3/2

)
a2c. The number densities thus calculated

for α-Ti0.676Zr0.324 are consistent with the equation of state values to within a fractional
error of <1%.

4. Discussion

The bulk moduli measured for the α-phases of Ti, Ti0.676Zr0.324, Ti0.5Zr0.5 and Zr are
compared in Table 1. For a given material, there is a spread in values that may orig-
inate from factors such as the sample purity and grain size. For example, the rigidity
and hardness of Ti increases with oxygen content as its breaking-strain decreases [33],
while the grain size can affect stress distributions and deformation mechanisms during
compression [24]. It is notable that precipitation of the ω-phase in Ti and Zr alloys can
also have a marked impact on their mechanical properties [34].
As shown in Table 1, the variation in B0 values for the end members, namely 102–

117 GPa for Ti versus 83–94.8 GPa for Zr, is much less than the discrepancy in values
reported for the alloys, i.e. B0 = 87(4) GPa for Ti0.676Zr0.324 versus B0 = 148(3) GPa for
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Material B0 / GPa B′
0 Reference

Ti 102 9.1 [30]
Ti 105 – [31]
Ti 106.69 4.54 [24]a

Ti 114(3) 4 [25]
Ti 117(9) 3.9(4) [23]

Ti0.676Zr0.324 87(4) 6.6(8) present work
Ti0.5Zr0.5 148(3) 3.8(2) [21]

Zr 83 – [31]
Zr 92(3) 4 [29]
Zr 94.8 4.11 [32]

Table 1. The zero-pressure isothermal bulk modulus and its first pressure derivative for the α-phases of Ti,

Ti0.676Zr0.324, Ti0.5Zr0.5 and Zr. a Nano-crystalline material.

Ti0.5Zr0.5. In the compression experiments on these alloys, the onset of the α → ω phase
transition was observed at .12 GPa for the null-scattering alloy versus 11.0(1.5) GPa for
the equiatomic Ti0.5Zr0.5 alloy in the work by Bashkin et al. [21], where the latter was
deduced by comparing data from energy dispersive x-ray diffraction and super-conducting
transition temperature measurements. There is not, therefore, a clear correlation between
the difference in B0 values for these alloys and the pressure at which the ω-phase first
starts to appear. The role played by impurities is difficult to assess because they were not
identified specifically in work on the equiatomic Ti0.5Zr0.5 alloy: The impurity content
of the starting elements Ti and Zr was given as <0.02 and <0.04 at.%, respectively, and
electron microprobe analysis indicated a final alloy with 49.6 at.% Ti and 50.4 at.% Zr,
with an uncertainty of ±0.4 at.% [21, 22].
It would therefore be helpful to make a systematic investigation on the influence of fac-

tors such as oxygen content, grain size and precipitation of the ω-phase on the mechanical
properties of TixZr1−x alloys. Similarly, given the role played by the null-scattering alloy
as a gasket material in high-pressure neutron scattering experiments, it would be helpful
to make a systematic assessment of the effect of non-uniform stress on the mechanical
properties of this alloy for the different toroidal-anvil geometries that are employed with
opposed-anvil setups such as the Paris-Edinburgh press [3]. This information would be
useful in modelling the mechanisms of gasket deformation, and may thereby help in
avoiding their failure during high-pressure experiments.

5. Conclusion

X-ray diffraction was used to find the pressure-volume equation of state on compression
for the ‘null-scattering’ alloy Ti0.676Zr0.324 at room temperature and pressures up to
∼30 GPa. An α → ω phase transition was observed over a broad pressure range extending
from .12 to ∼25 GPa. A third order Birch-Murnaghan equation of state was fitted to
the α-phase data, giving a zero pressure isothermal bulk modulus B0 = 87(4) GPa and
a pressure derivative B′

0 = 6.6(8). The results are required for the correction procedures
that are employed when analysing the data obtained from in situ high-pressure neutron
diffraction experiments on amorphous and liquid materials.
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