1,083 research outputs found

    Profiling the Australian coaching workforce

    Full text link

    Microcapsule Buckling Triggered by Compression-Induced Interfacial Phase Change

    Get PDF
    There is an emerging trend towards the fabrication of microcapsules at liquid interfaces. In order to control the parameters of such capsules, the interfacial processes governing their formation must be understood. Here, poly(vinyl alcohol) films are assembled at the interface of water-in-oil microfluidic droplets. The polymer is cross-linked using cucurbit[8]uril ternary supramolecular complexes. It is shown that compression-induced phase change causes the onset of buckling in the interfacial film. On evaporative compression, the interfacial film both increases in density and thickens, until it reaches a critical density and a phase change occurs. We show that this increase in density can be simply related to the film Poisson ratio and area compression.This description captures fundamentals of many compressive interfacial phase changes and can also explain the observation of a fixed thickness-to-radius ratio at buckling, (TR)\left(\frac TR\right)buck_{buck}

    It takes two to tango: two TatA paralogues and two redox enzyme-specific chaperones are involved in the localization of twin-arginine translocase substrates in Campylobacter jejuni.

    Get PDF
    The food-borne zoonotic pathogen Campylobacter jejuni has complex electron transport chains required for growth in the host, many of which contain cofactored periplasmic enzymes localized by the twin-arginine translocase (TAT). We report here the identification of two paralogues of the TatA translocase component in C. jejuni strain NCTC 11168, encoded by cj1176c (tatA1) and cj0786 (tatA2). Deletion mutants constructed in either or both of the tatA1 and tatA2 genes displayed distinct growth and enzyme activity phenotypes. For sulphite oxidase (SorAB), the multi-copper oxidase (CueO) and alkaline phosphatase (PhoX), complete dependency on TatA1 for correct periplasmic activity was observed. However, the activities of nitrate reductase (NapA), formate dehydrogenase (FdhA) and trimethylamine N-oxide reductase (TorA) were significantly reduced in the tatA2 mutant. In contrast, the specific rate of fumarate reduction catalysed by the flavoprotein subunit of the methyl menaquinone fumarate reductase (MfrA) was similar in periplasmic fractions of both the tatA1 and the tatA2 mutants and only the deletion of both genes abolished activity. Nevertheless, unprocessed MfrA accumulated in the periplasm of the tatA1 (but not tatA2) mutant, indicating aberrant signal peptide cleavage. Surprisingly, TatA2 lacks two conserved residues (Gln8 and Phe39) known to be essential in Escherichia coli TatA and we suggest it is unable to function correctly in the absence of TatA1. Finally, only two TAT chaperones (FdhM and NapD) are encoded in strain NCTC 11168, which mutant studies confirmed are highly specific for formate dehydrogenase and nitrate reductase assembly, respectively. Thus, other TAT substrates must use general chaperones in their biogenesis

    SERS of individual nanoparticles on a mirror : size does matter, but so does shape

    Get PDF
    The authors thank Javier Aizpurua (CSIC − UPV/EHU/DIPC) for helpful discussions. We acknowledge financial support from EPSRC Grants EP/G060649/1, EP/K028510/1, EP/L027151/1, ERC Grant LINASS 320503. F.B. acknowledges support from the Winton Programme for the Physics of Sustainability. R.C. acknowledges support from the Dr. Manmohan Singh scholarship from St. John’s College.Coupling noble metal nanoparticles by a 1 nm gap to an underlying gold mirror confines light to extremely small volumes, useful for sensing on the nanoscale. Individually measuring 10 000 of such gold nanoparticles of increasing size dramatically shows the different scaling of their optical scattering (far-field) and surface-enhanced Raman emission (SERS, near-field). Linear red-shifts of the coupled plasmon modes are seen with increasing size, matching theory. The total SERS from the few hundred molecules under each nanoparticle dramatically increases with increasing size. This scaling shows that maximum SERS emission is always produced from the largest nanoparticles, irrespective of tuning to any plasmonic resonances. Changes of particle facet with nanoparticle size result in vastly weaker scaling of the near-field SERS, without much modifying the far-field, and allows simple approaches for optimizing practical sensing.Publisher PDFPeer reviewe

    A conserved amino acid residue critical for product and substrate specificity in plant triterpene synthases

    Get PDF
    Triterpenes are structurally complex plant natural products with numerous medicinal applications. They are synthesized through an origami-like process that involves cyclization of the linear 30 carbon precursor 2,3-oxidosqualene into different triterpene scaffolds. Here, through a forward genetic screen in planta, we identify a conserved amino acid residue that determines product specificity in triterpene synthases from diverse plant species. Mutation of this residue results in a major change in triterpene cyclization, with production of tetracyclic rather than pentacyclic products. The mutated enzymes also use the more highly oxygenated substrate dioxidosqualene in preference to 2,3-oxidosqualene when expressed in yeast. Our discoveries provide new insights into triterpene cyclization, revealing hidden functional diversity within triterpene synthases. They further open up opportunities to engineer novel oxygenated triterpene scaffolds by manipulating the precursor supply
    corecore