61 research outputs found

    Lethal Interaction of Nuclear and Mitochondrial Genotypes in Drosophila melanogaster

    Get PDF
    Drosophila melanogaster, like most animal species, displays considerable genetic variation in both nuclear and mitochondrial DNA (mtDNA). Here we tested whether any of four natural mtDNA variants was able to modify the effect of the phenotypically mild, nuclear tko(25t) mutation, affecting mitochondrial protein synthesis. When combined with tko(25t), the mtDNA from wild strain KSA2 produced pupal lethality, accompanied by the presence of melanotic nodules in L3 larvae. KSA2 mtDNA, which carries a substitution at a conserved residue of cytochrome b that is predicted to be involved in subunit interactions within respiratory complex III, conferred drastically decreased respiratory capacity and complex III activity in the tko(25t) but not a wild-type nuclear background. The complex III inhibitor antimycin A was able to phenocopy effects of the tko(25t) mutation in the KSA2 mtDNA background. This is the first report of a lethal, nuclear-mitochondrial interaction within a metazoan species, representing a paradigm for understanding genetic interactions between nuclear and mitochondrial genotype relevant to human health and disease.Peer reviewe

    Local C-Reactive Protein Expression in Obliterative Lesions and the Bronchial Wall in Posttransplant Obliterative Bronchiolitis

    Get PDF
    The local immunoreactivity of C-reactive protein (CRP) was studied in a heterotopic porcine model of posttranplant obliterative bronchiolitis (OB). Bronchial allografts and control autografts were examined serially 2–28 days after subcutaneous transplantation. The autografts stayed patent. In the allografts, proliferation of inflammatory cells (P < .0001) and fibroblasts (P = .02) resulted in occlusion of the bronchial lumens (P < .01). Influx of CD4+ (P < .001) and CD8+ (P < .0001) cells demonstrated allograft immune response. CRP positivity simultaneously increased in the bronchial walls (P < .01), in macrophages, myofibroblasts, and endothelial cells. Local CRP was predictive of features characteristic of OB (R = 0.456–0.879, P < .05−P < .0001). Early obliterative lesions also showed CRP positivity, but not mature, collagen-rich obliterative plugs (P < .05). During OB development, CRP is localized in inflammatory cells, myofibroblasts and endothelial cells probably as a part of the local inflammatory response

    Avidin related protein 2 shows unique structural and functional features among the avidin protein family

    Get PDF
    BACKGROUND: The chicken avidin gene family consists of avidin and several avidin related genes (AVRs). Of these gene products, avidin is the best characterized and is known for its extremely high affinity for D-biotin, a property that is utilized in numerous modern life science applications. Recently, the AVR genes have been expressed as recombinant proteins, which have shown different biotin-binding properties as compared to avidin. RESULTS: In the present study, we have employed multiple biochemical methods to better understand the structure-function relationship of AVR proteins focusing on AVR2. Firstly, we have solved the high-resolution crystal structure of AVR2 in complex with a bound ligand, D-biotin. The AVR2 structure reveals an overall fold similar to the previously determined structures of avidin and AVR4. Major differences are seen, especially at the 1–3 subunit interface, which is stabilized mainly by polar interactions in the case of AVR2 but by hydrophobic interactions in the case of AVR4 and avidin, and in the vicinity of the biotin binding pocket. Secondly, mutagenesis, competitive dissociation analysis and differential scanning calorimetry were used to compare and study the biotin-binding properties as well as the thermal stability of AVRs and avidin. These analyses pinpointed the importance of residue 109 for biotin binding and stability of AVRs. The I109K mutation increased the biotin-binding affinity of AVR2, whereas the K109I mutation decreased the biotin-binding affinity of AVR4. Furthermore, the thermal stability of AVR2(I109K) increased in comparison to the wild-type protein and the K109I mutation led to a decrease in the thermal stability of AVR4. CONCLUSION: Altogether, this study broadens our understanding of the structural features determining the ligand-binding affinities and stability as well as the molecular evolution within the protein family. This novel information can be applied to further develop and improve the tools already widely used in avidin-biotin technology

    Structure and characterization of a novel chicken biotin-binding protein A (BBP-A)

    Get PDF
    BACKGROUND: The chicken genome contains a BBP-A gene showing similar characteristics to avidin family genes. In a previous study we reported that the BBP-A gene may encode a biotin-binding protein due to the high sequence similarity with chicken avidin, especially at regions encoding residues known to be located at the ligand-binding site of avidin. RESULTS: Here, we expand the repertoire of known macromolecular biotin binders by reporting a novel biotin-binding protein A (BBP-A) from chicken. The BBP-A recombinant protein was expressed using two different expression systems and purified with affinity chromatography, biochemically characterized and two X-ray structures were solved – in complex with D-biotin (BTN) and in complex with D-biotin D-sulfoxide (BSO). The BBP-A protein binds free biotin with high, "streptavidin-like" affinity (K(d )~ 10(-13 )M), which is about 50 times lower than that of chicken avidin. Surprisingly, the affinity of BBP-A for BSO is even higher than the affinity for BTN. Furthermore, the solved structures of the BBP-A – BTN and BBP-A – BSO complexes, which share the fold with the members of the avidin and lipocalin protein families, are extremely similar to each other. CONCLUSION: BBP-A is an avidin-like protein having a β-barrel fold and high affinity towards BTN. However, BBP-A differs from the other known members of the avidin protein family in thermal stability and immunological properties. BBP-A also has a unique ligand-binding property, the ability to bind BTN and BSO at comparable affinities. BBP-A may have use as a novel material in, e.g. modern bio(nano)technological applications

    Structure and characterization of a novel chicken biotin-binding protein A (BBP-A)

    Get PDF
    Background. The chicken genome contains a BBP-A gene showing similar characteristics to avidin family genes. In a previous study we reported that the BBP-A gene may encode a biotin-binding protein due to the high sequence similarity with chicken avidin, especially at regions encoding residues known to be located at the ligand-binding site of avidin. Results. Here, we expand the repertoire of known macromolecular biotin binders by reporting a novel biotin-binding protein A (BBP-A) from chicken. The BBP-A recombinant protein was expressed using two different expression systems and purified with affinity chromatography, biochemically characterized and two X-ray structures were solved – in complex with D-biotin (BTN) and in complex with D-biotin D-sulfoxide (BSO). The BBP-A protein binds free biotin with high, "streptavidin-like" affinity (Kd ~ 10-¹³ M), which is about 50 times lower than that of chicken avidin. Surprisingly, the affinity of BBP-A for BSO is even higher than the affinity for BTN. Furthermore, the solved structures of the BBP-A – BTN and BBP-A – BSO complexes, which share the fold with the members of the avidin and lipocalin protein families, are extremely similar to each other. Conclusion. BBP-A is an avidin-like protein having a β-barrel fold and high affinity towards BTN. However, BBP-A differs from the other known members of the avidin protein family in thermal stability and immunological properties. BBP-A also has a unique ligand-binding property, the ability to bind BTN and BSO at comparable affinities. BBP-A may have use as a novel material in, e.g. modern bio(nano)technological applications.peerReviewe

    Medico-legal autopsy in postoperative hemodynamic collapse following coronary artery bypass surgery

    Get PDF
    Sudden unexpected postoperative hemodynamic collapse with a high mortality develops in 1–3% of patients undergoing coronary artery bypass surgery (CABG). The contribution of surgical graft complications to this serious condition is poorly known and their demonstration at autopsy is a challenging task. Isolated CABG was performed in 8,807 patients during 1988–1999. Of the patients, 76 (0.9%) developed sudden postoperative hemodynamic collapse resulting in subsequent emergency reopening of the median sternotomy and open cardiac massage. Further emergency reoperation could be performed in 62 (82%) whereas 14 patients died prior to reoperation and a further 21 did not survive the reoperation or died a few days later. All 35 (46%) patients who did not survive were subjected to medico-legal autopsy combined with postmortem cast angiography. By combining clinical data with autopsy and angiography data, various types of graft complications were observed in 27 (36%, 1.3 per patient) of the 76 patients with hemodynamic collapse. There were no significant differences in the frequency (33 vs. 40%) or number of complicated grafts per patient (1.2 vs. 1.4) between those who survived reoperation and who did not. Autopsy detected 25 major and minor findings not diagnosed clinically. Postmortem cast angiography visualized 2 graft twists not possible to detect by autopsy dissection only. Surgical graft complications were the most frequent single cause for sudden postoperative hemodynamic collapse in CABG patients leading to a fatal outcome in almost half of the cases. Postmortem angiography improved the accuracy of autopsy diagnostics of graft complications

    Selective targeting of microglia by quantum dots

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microglia, the resident immune cells of the brain, have been implicated in brain injury and various neurological disorders. However, their precise roles in different pathophysiological situations remain enigmatic and may range from detrimental to protective. Targeting the delivery of biologically active compounds to microglia could help elucidate these roles and facilitate the therapeutic modulation of microglial functions in neurological diseases.</p> <p>Methods</p> <p>Here we employ primary cell cultures and stereotaxic injections into mouse brain to investigate the cell type specific localization of semiconductor quantum dots (QDs) in vitro and in vivo. Two potential receptors for QDs are identified using pharmacological inhibitors and neutralizing antibodies.</p> <p>Results</p> <p>In mixed primary cortical cultures, QDs were selectively taken up by microglia; this uptake was decreased by inhibitors of clathrin-dependent endocytosis, implicating the endosomal pathway as the major route of entry for QDs into microglia. Furthermore, inhibiting mannose receptors and macrophage scavenger receptors blocked the uptake of QDs by microglia, indicating that QD uptake occurs through microglia-specific receptor endocytosis. When injected into the brain, QDs were taken up primarily by microglia and with high efficiency. In primary cortical cultures, QDs conjugated to the toxin saporin depleted microglia in mixed primary cortical cultures, protecting neurons in these cultures against amyloid beta-induced neurotoxicity.</p> <p>Conclusions</p> <p>These findings demonstrate that QDs can be used to specifically label and modulate microglia in primary cortical cultures and in brain and may allow for the selective delivery of therapeutic agents to these cells.</p
    corecore