1,387 research outputs found

    Particle Survival and Polydispersity in Aggregation

    Full text link
    We study the probability, PS(t)P_S(t), of a cluster to remain intact in one-dimensional cluster-cluster aggregation when the cluster diffusion coefficient scales with size as D(s)∼sγD(s) \sim s^\gamma. PS(t)P_S(t) exhibits a stretched exponential decay for γ<0\gamma < 0 and the power-laws t−3/2t^{-3/2} for γ=0\gamma=0, and t−2/(2−γ)t^{-2/(2-\gamma)} for 0<γ<20<\gamma<2. A random walk picture explains the discontinuous and non-monotonic behavior of the exponent. The decay of PS(t)P_S(t) determines the polydispersity exponent, τ\tau, which describes the size distribution for small clusters. Surprisingly, τ(γ)\tau(\gamma) is a constant τ=0\tau = 0 for 0<γ<20<\gamma<2.Comment: submitted to Europhysics Letter

    Superconducting NbN microstrip detectors

    Get PDF
    Superconducting NbN strip transmission line counters and coupling circuits were processed on silicon wafers using thin film techniques, and they were characterized with several methods to verify the design principles. The stripline circuits, designed using microwave design rules, were simulated using a circuit design tool enhanced to include modelling of the superconducting lines. The strips, etched out of the 282 nm thick top NbN film with resistivity 284 µ?cm at 20 K, have critical temperatures in the range 12 to 13 K and a critical current density approximately Jc(0) = 3.3·105 A/cm2. The linearized heat transfer coefficient between the strip and the substrate is approximately 1.1·105 W/(m2K) and the healing length is about 1.6 µm between 3 and 5 K temperatures. Traversing 5 MeV a-particles caused the strips to quench. No events due to electrons could be detected in agreement with the predicted signal amplitude which is below the noise threshold of our wideband circuitry. The strip bias current and hence the signal amplitude were limited due to a microbridge at the isolator step of the impedance transformer

    Some Recent Developments on Kink Collisions and Related Topics

    Full text link
    We review recent works on modeling of dynamics of kinks in 1+1 dimensional Ï•4\phi^4 theory and other related models, like sine-Gordon model or Ï•6\phi^6 theory. We discuss how the spectral structure of small perturbations can affect the dynamics of non-perturbative states, such as kinks or oscillons. We describe different mechanisms, which may lead to the occurrence of the resonant structure in the kink-antikink collisions. We explain the origin of the radiation pressure mechanism, in particular, the appearance of the negative radiation pressure in the Ï•4\phi^4 and Ï•6\phi^6 models. We also show that the process of production of the kink-antikink pairs, induced by radiation is chaotic.Comment: 26 pages, 9 figures; invited chapter to "A dynamical perspective on the {\phi}4 model: Past, present and future", Eds. P.G. Kevrekidis and J. Cuevas-Maraver; Springer book class with svmult.cls include

    Noninvasive Neuromonitoring of Hypothermic Circulatory Arrest in Aortic Surgery

    Get PDF
    Background and Aims: Circulatory arrest carries a high risk of neurological damage, but modern monitoring methods lack reliability, and is susceptible to the generalized effects of both anesthesia and hypothermia. The objective of this prospective, explorative study was to research promising, reliable, and noninvasive methods of neuromonitoring, capable of predicting neurological outcome after hypothermic circulatory arrest. Materials and Methods: Thirty patients undergoing hypothermic circulatory arrest during surgery of the thoracic aorta were recruited in a single center and over the course of 4 years. Neuromonitoring was performed with a four-channel electroencephalogram montage and a near-infrared spectroscopy monitor. All data were tested off-line against primary neurological outcome, which was poor if the patient suffered a significant neurological complication (stroke, operative death). Results: A poor primary neurological outcome seen in 10 (33%) patients. A majority (63%) of the cases were emergency surgery, and thus, no neurological baseline evaluation was possible. The frontal hemispheric asymmetry of electroencephalogram, as measured by the brain symmetry index, predicted primary neurological outcome with a sensitivity of 79 (interquartile range; 62%-88%) and specificity of 71 (interquartile range; 61%-84%) during the first 6 h after end of circulatory arrest. Conclusion: The hemispheric asymmetry of frontal electroencephalogram is inherently resistant to generalized dampening effects and is predictive of primary neurological outcome. The brain symmetry index provides an easy-to-use, noninvasive neuromonitoring method for surgery of the thoracic aorta and postoperative intensive care.Peer reviewe

    Cluster persistence in one-dimensional diffusion--limited cluster--cluster aggregation

    Get PDF
    The persistence probability, PC(t)P_C(t), of a cluster to remain unaggregated is studied in cluster-cluster aggregation, when the diffusion coefficient of a cluster depends on its size ss as D(s)∼sγD(s) \sim s^\gamma. In the mean-field the problem maps to the survival of three annihilating random walkers with time-dependent noise correlations. For γ≥0\gamma \ge 0 the motion of persistent clusters becomes asymptotically irrelevant and the mean-field theory provides a correct description. For γ<0\gamma < 0 the spatial fluctuations remain relevant and the persistence probability is overestimated by the random walk theory. The decay of persistence determines the small size tail of the cluster size distribution. For 0<γ<20 < \gamma < 2 the distribution is flat and, surprisingly, independent of γ\gamma.Comment: 11 pages, 6 figures, RevTeX4, submitted to Phys. Rev.

    Current Research into Applications of Tomography for Fusion Diagnostics

    Get PDF
    Retrieving spatial distribution of plasma emissivity from line integrated measurements on tokamaks presents a challenging task due to ill-posedness of the tomography problem and limited number of the lines of sight. Modern methods of plasma tomography therefore implement a-priori information as well as constraints, in particular some form of penalisation of complexity. In this contribution, the current tomography methods under development (Tikhonov regularisation, Bayesian methods and neural networks) are briefly explained taking into account their potential for integration into the fusion reactor diagnostics. In particular, current development of the Minimum Fisher Regularisation method is exemplified with respect to real-time reconstruction capability, combination with spectral unfolding and other prospective tasks.Peer reviewe

    A machine learning approach based on generative topographic mapping for disruption prevention and avoidance at JET

    Get PDF
    The need for predictive capabilities greater than 95% with very limited false alarms are demanding requirements for reliable disruption prediction systems in tokamaks such as JET or, in the near future, ITER. The prediction of an upcoming disruption must be provided sufficiently in advance in order to apply effective disruption avoidance or mitigation actions to prevent the machine from being damaged. In this paper, following the typical machine learning workflow, a generative topographic mapping (GTM) of the operational space of JET has been built using a set of disrupted and regularly terminated discharges. In order to build the predictive model, a suitable set of dimensionless, machine-independent, physics-based features have been synthesized, which make use of 1D plasma profile information, rather than simple zero-D time series. The use of such predicting features, together with the power of the GTM in fitting the model to the data, obtains, in an unsupervised way, a 2D map of the multi-dimensional parameter space of JET, where it is possible to identify a boundary separating the region free from disruption from the disruption region. In addition to helping in operational boundaries studies, the GTM map can also be used for disruption prediction exploiting the potential of the developed GTM toolbox to monitor the discharge dynamics. Following the trajectory of a discharge on the map throughout the different regions, an alarm is triggered depending on the disruption risk of these regions. The proposed approach to predict disruptions has been evaluated on a training and an independent test set and achieves very good performance with only one tardive detection and a limited number of false detections. The warning times are suitable for avoidance purposes and, more important, the detections are consistent with physical causes and mechanisms that destabilize the plasma leading to disruptions.Peer reviewe

    RF sheath modeling of experimentally observed plasma surface interactions with the JET ITER-Like Antenna

    Get PDF
    Waves in the Ion Cyclotron Range of Frequencies (ICRF) enhance local Plasma-Surface Interactions (PSI) near the wave launchers and magnetically-connected objects via Radio-Frequency (RF) sheath rectification. ITER will use 20MW of ICRF power over long pulses, questioning the long-term impact of RF-enhanced localized erosion on the lifetime of its Beryllium (Be) wall. Recent dedicated ICRF-heated L-mode discharges documented this process on JET for different types of ICRF antennas. Using visible spectroscopy in JET ICRF-heated L-mode discharges, poloidally-localized regions of enhanced (by similar to 2-4x) Be I and Be II light emission were observed on two outboard limiters magnetically connected to the bottom of the active ITER-Like Antenna (ILA). The observed RF-PSI induced by the ILA was qualitatively comparable to that induced by the JET standard, type-A2 antennas, for similar strap toroidal phasing and connection geometries. The Be II line emission was found more intense when powering the bottom half of the ILA rather than its top half. Conversely, more pronounced SOL density modifications were observed with only top array operation, on field lines connected to the top half of the ILA. So far the near-field modeling of the ILA with antenna code TOPICA (Torino Polytechnic Ion Cyclotron Antenna), using curved antenna model, was partially able to reproduce qualitatively the observed phenomena. A quantitative discrepancy persisted between the observed Be source amplification and the calculated, corresponding increases in E-// field at the magnetically connected locations to the ILA when changing from only top to only bottom half antenna operation. This paper revisits these current drive phased and half-ILA powered cases using for the new simulations flat model of the ILA and more realistic antenna feeding to calculate the E-// field maps with TOPICA code. Further, the Self-consistent Sheaths and Waves for Ion Cyclotron Heating Slow Wave (SSWICH-SW) code, which couples slow wave evanescence with DC Scrape-Off Layer (SOL) biasing, is used to estimate the poloidal distribution of rectified RF-sheath Direct Current (DC) potential V-DC in the private SOL between the ILA poloidal limiters. The approach so far was limited to correlating the observed, enhanced emission regions at the remote limiters to the antenna near-electric fields, as calculated by TOPICA. The present approach includes also a model for the rectification of these near-fields in the private SOL of the ILA. With the improved approach, when comparing only top and only bottom half antenna feeding, we obtained good qualitative correlation between all experimental measurements and the calculated local variations in the E-// field and V-DC potential.Peer reviewe

    Modelling of tungsten erosion and deposition in the divertor of JET-ILW in comparison to experimental findings

    Get PDF
    The erosion, transport and deposition of tungsten in the outer divertor of JET-ILW has been studied for an H-Mode discharge with low frequency ELMs. For this specific case with an inter-ELM electron temperature at the strike point of about 20 eV, tungsten sputtering between ELMs is almost exclusively due to beryllium impurity and self-sputtering. However, during ELMs tungsten sputtering due to deuterium becomes important and even dominates. The amount of simulated local deposition of tungsten relative to the amount of sputtered tungsten in between ELMs is very high and reaches values of 99% for an electron density of 5E13 cm(-3) at the strike point and electron temperatures between 10 and 30 eV. Smaller deposition values are simulated with reduced electron density. The direction of the B-field significantly influences the local deposition and leads to a reduction if the E x B drift directs towards the scrape-off-layer. Also, the thermal force can reduce the tungsten deposition, however, an ion temperature gradient of about 0.1 eV/mm or larger is needed for a significant effect. The tungsten deposition simulated during ELMs reaches values of about 98% assuming ELM parameters according to free-streaming model. The measured WI emission profiles in between and within ELMs have been reproduced by the simulation. The contribution to the overall net tungsten erosion during ELMs is about 5 times larger than the one in between ELMs for the studied case. However, this is due to the rather low electron temperature in between ELMs, which leads to deuterium impact energies below the sputtering threshold for tungsten.Peer reviewe

    Comparison of the structure of the plasma-facing surface and tritium accumulation in beryllium tiles from JET ILW campaigns 2011-2012 and 2013-2014

    Get PDF
    In this study, beryllium tiles from Joint European Torus (JET) vacuum vessel wall were analysed and compared regarding their position in the vacuum vessel and differences in the exploitation conditions during two campaigns of ITER-Like-Wall (ILW) in 2011-2012 (ILW1) and 2013-2014 (ILW2) Tritium content in beryllium samples were assessed. Two methods were used to measure tritium content in the samples - dissolution under controlled conditions and tritium thermal desorption. Prior to desorption and dissolution experiments, scanning electron microscopy and energy dispersive x-ray spectroscopy were used to study structure and chemical composition of plasma-facing-surfaces of the beryllium samples. Experimental results revealed that tritium content in the samples is in range of 2.10(11)-2.10(13) tritium atoms per square centimetre of the surface area with its highest content in the samples from the outer wall of the vacuum vessel (up to 1.9.10(13) atoms/cm(2) in ILW1 campaign and 2.4.10(13) atoms/cm(2) in ILW2). The lowest content of tritium was found in the upper part of the vacuum vessel (2.0.10(12) atoms/cm(2) and 2.0.10(11) atoms/cm(2) in ILW1 and ILW2, respectively). Results obtained from scanning electron microscopy has shown that surface morphology is different within single tile, however if to compare two campaigns main tendencies remains similar.Peer reviewe
    • …
    corecore