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Cluster persistence in one-dimensional diffusion-limited cluster-cluster aggregation

E. K. O. Hellén,* P. E. Salmi,† and M. J. Alava‡

Laboratory of Physics, Helsinki University of Technology, P. O. Box 1100, FIN-02150 HUT, Finland
~Received 10 June 2002; published 26 November 2002!

The persistence probability,PC(t), of a cluster to remain unaggregated is studied in cluster-cluster aggre-
gation, when the diffusion coefficient of a cluster depends on its sizes as D(s);sg. In the mean field the
problem maps to the survival of three annihilating random walkers with time-dependent noise correlations. For
g>0 the motion of persistent clusters becomes asymptotically irrelevant and the mean-field theory provides a
correct description. Forg,0 the spatial fluctuations remain relevant and the persistence probability is over-
estimated by the random walk theory. The decay of persistence determines the small size tail of the cluster size
distribution. For 0,g,2 the distribution is flat and, surprisingly, independent ofg.

DOI: 10.1103/PhysRevE.66.051108 PACS number~s!: 05.40.2a, 05.50.1q, 05.70.Ln, 02.50.Ey

I. INTRODUCTION

Aggregation models are useful in describing various phe-
nomena from chemical engineering, material sciences, atmo-
sphere research to even astrophysics@1–3#. One general
property of these models is that they lead to dynamic scale
invariance: when all the lengths are scaled by the character-
istic length, the system looks the same at different times.
Lately, studies of first passage problems@4# under the name
persistence@5–7# have shown that not necessarily all the
properties of a dynamically scaling system are characterized
by a single scale@8#. Here we address the probability of a
cluster to remain intact in an aggregation system and show
how this quantity and the associated length scale relate to the
physically relevant issue of the shape of the cluster size dis-
tribution.

In an aggregation system one can define many first-
passage problems and related quantities@9#. We study the
probability that a cluster has not aggregated with any other
one before timet @10#. This probability is called cluster per-
sistence and denoted byPC(t). Similar problems consider-
ing uninfected walkers in one-dimensional reaction-diffusion
systems@11# and Potts model@12# have recently been shown
to display interesting behavior. We concentrate on diffusion-
limited cluster-cluster aggregation~DLCA! in one dimen-
sion, where the dynamics is dominated by spatial fluctuations
@13#. For high dimensional systems these may be neglected,
and on the mean-field level, valid for dimensions higher than
the upper critical dimension, aggregation is well understood
@14–16#.

The DLCA model is defined so that the nearest neighbor
occupied sites in a lattice are identified as a cluster. Each
cluster diffuses with a size dependent diffusion constant,
D(s);sg, where g is the diffusion exponent. If a cluster
collides with another one, the two clusters are irreversibly
merged together and the aggregate diffuses either faster (g
.0) or slower (g,0) than either of the colliding clusters.

While the size independent diffusion (g50) is exactly solv-
able in one dimension, it forms a marginal case between two
completely different aggregation mechanisms@17#. We study
here the more physically interesting problem withgÞ0.

The aim is to study the dependence of cluster persistence
on the diffusion exponentg and extend the study presented
in Ref. @10#. We also pay attention to the random-walk~RW!
problems that ensue as on a mean-field level the problem is
reduced to the survival of three annihilating random walkers.
While theg50 case is readily solvable by various methods
@18,19#, already the case of three annihilating particles with
unequal diffusion constants is rather involved@20#. Hereg
Þ0 leads to time-dependent diffusion coefficients, and we
derive a Fokker-Planck~FP! equation for the survival of
these particles. Forg>0 its analysis yields an algebraically
decaying survival probabilityPsurv(t);t2uRW(g). The sur-
vival exponentuRW is discontinuous and nonmonotonic as it
is given by uRW(g)52/(22g) for 0,g,2 and uRW(0)
53/2. The numerical comparison of the survival and persis-
tence probabilities validates the theory and hencePC(t)
;t2uC with uC5uRW.

For g,0 simulations show that both the survival and
persistence probabilities decay stretched exponentially as
exp(2Ctb). The Fokker-Planck equation is not amenable to
analytic analysis, so we use a Lifshitz tail argument to un-
derstand the survival. Such heuristic arguments and numerics
suggest a stretching exponentbRW(g)52g/(422g). The
Lifshitz tail argument indicates that the exponent is affected
by the fluctuations in the motion of the particles that neigh-
bor the surviving one. These are taken into account only
approximately in the mean-field theory and for the DLCA
numerics givesbC522g/(623g). A closer examination
reveals that also the distance distribution between the par-
ticles surrounding a surviving one in the mean-field model
scales in a different way than the corresponding distribution
of the DLCA.

In addition, we show how the cluster persistence is related
to the cluster size distribution. To clarify the connection, con-
sider the dynamic scaling in DLCA. Both simulations and
experiments show that the cluster size distributionns(t) ~the
number of cluster of sizes per lattice site at timet) scales
as @1#

*Electronic address: ehe@fyslab.hut.fi
†Electronic address: psa@fyslab.hut.fi
‡Electronic address: mja@fyslab.hut.fi

PHYSICAL REVIEW E 66, 051108 ~2002!

1063-651X/2002/66~5!/051108~10!/$20.00 ©2002 The American Physical Society66 051108-1



ns~ t !5S~ t !22f S s

S~ t ! D , ~1!

where S(t);tz is the average cluster size and the scaling
limit, s→` andS(t)→` with s/S(t) fixed, is taken. In one
dimension the dynamic exponentz51/(22g) @21,22#. For
g>0 the cluster size distribution is broad in the sense that
the scaling function behaves asf (x);x2t as x[s/S(t)
→0. For g,0 the scaling function is bell shaped andf (x)
;exp(2Ax2umu) for x→0, whereA is a constant. To deter-
mine the polydispersity exponentt, which characterizes the
number of small clusters, is nontrivial even on a mean-field
level @14,23# whereas the similar exponentm readily follows
from scaling analysis@15#. All the exponentsz, t, andm are
universal, i.e., they do not depend on the fine details of the
model. They can, and it is natural to expect that they do,
depend on the diffusion exponentg.

One of the main results of this paper is that the exponents
describing the decay of the cluster persistence are related to
these universal exponents as

uC5~22t!z, ~2a!

bC5umuz. ~2b!

Quite unexpectedly, the polydispersity exponent is a con-
stant,t50, for 0,g,2, but discontinuous sincet(g50)
521. The reasoning leading to the relations~2a! and~2b! is
universally applicable, so that the behavior of the tail of clus-
ter size distribution might be tackled through cluster persis-
tence in other models, too.

The outline of the paper is as follows. In Sec. II the mean-
field random walk theory is formulated and the associated
Fokker-Planck equation is derived. Section III starts by de-
scribing the simulation methods. Thereafter the mean-field
theory is validated forg>0 by comparing the survival prob-
ability obtained from the analysis of the Fokker-Planck equa-
tion to the simulation results of both the random-walk system
and the DLCA one. Forg,0 a similar comparison shows
the effect of spatial fluctuations, and the stretched exponen-
tial decay of the survival probability is explained using a
Lifshitz tail argument. Section IV concentrates on the rela-
tion between the persistence and the small size tail of the
cluster size distribution. The paper ends with conclusions in
Sec. V.

II. MEAN FIELD: REDUCTION TO A THREE PARTICLE
PROBLEM

The two clusters surrounding a persistent one will grow
when they collide with other clusters~but not with the per-
sistent one!. The cluster in the middle will be persistent until
it collides with one of the neighbors. After this the two re-
maining clusters would contribute to persistence only by in-
creasing the mass of the clusters surrounding another persis-
tent cluster. This is negligible at late times, since the
persistent clusters will be separated by many nonpersistent
ones, i.e.,tuC@tz. In other words, the correlations in the
system grow only astz and each persistent cluster is asymp-

totically independent. Thus it is sufficient to consider only
one persistent cluster and its two neighbors.

The collisions of the surrounding clusters make them big-
ger and increase or decrease the diffusivity. We make the
mean-field approximation that each cluster neighboring a
persistent one will grow as an average cluster does. Hence,
we replace the true process, where the surrounding clusters
collide at some discrete timest i , by a continuous one, where
the surrounding clusters grow asS(t). As D(s);sg these
clusters will diffuse with time-dependent diffusion coeffi-
cients. In the following analysis we will ignore the possible
early time crossover effects in the growth of the average
cluster size and the diffusion coefficients of the clusters sur-
rounding a persistent one are taken to follow a true power
law at all times. This will only affect the early time behavior.

The finite extent of clusters is irrelevant for cluster per-
sistence and we will consider the three clusters as pointlike
particles from now on. Letxi(t)( i 51,2,3) denote the posi-
tions of the particles at timet such that x1(0),x2(0)
,x3(0). The motion of these particles is described by the
Langevin equations

ẋi~ t !5j i~ t !, ~3!

with Gaussian white noiseŝj i(t)&50 and ^j i(t)j j (t8)&
52Di(t)d i j d(t2t8). The overdot denotes derivative with
respect to time and the brackets an ensemble average over
different realizations. The diffusion coefficients of the par-
ticles read asD1(t)5D3(t)5D1tgz and D2(t)5D2. The
meaning of a time-dependent diffusion coefficient, say
D1(t), is simply that the particle 1 will follow a simple
diffusive motion with a diffusion constantD1 in the time
scale

T1~ t !5E
0

t

dt8D1~ t8!/D15tgz11/~gz11!. ~4!

As we are interested in the survival of the middle particle
(x2), the process terminates when eitherx15x2 or x25x3. It
is convenient to consider the distances between the particles:
x12(t)5x2(t)2x1(t)>0 and x23(t)5x3(t)2x2(t)>0.
These obey similar Langevin equations

ẋ12~ t !5G12~ t !

ẋ23~ t !5G23~ t !,
~5!

where ^G12(t)&5^G23(t)&50 and ^G12(t)G12(t8)&
5^G23(t)G23(t8)&52(D21D1tgz)d(t2t8). The two noises
are correlated as the motion of the middle particle affects
both distances: ^G12(t)G23(t8)&52^j2(t)j2(t8)&
522D2d(t2t8)Þ0. For g.0 the noise correlations be-
come asymptotically irrelevant, which is not the case forg
,0.

To proceed, we transform Eqs.~5! to a Fokker-Planck
equation for the probability densityr(x12,x23;t) of the two
distances at timet. Due to the mutual correlations this is
easiest to do by computing the drift and diffusion coefficients
from their definitions
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Di5 lim
Dt→0

1

Dt
^xi~ t1Dt !2xi~ t !&,

Di j 5
1

2
lim

Dt→0

1

Dt
^@xi~ t1Dt !2xi~ t !#@xj~ t1Dt !2xj~ t !#&,

and insert these to the general Fokker-Planck equation@24#

]r

]t
52(

i 51

2
]

]xi
Dir1 (

i , j 51

2
]2

]xi]xj
Di j r. ~6!

A straightforward calculation gives

]r

]t
5~D21D1tgz!S ]2r

]x12
2

1
]2r

]x23
2 D 22D2

]2r

]x12]x23
. ~7!

The initial condition is now r(x12,x23;0)5d(x12

2x12
0 )d(x232x23

0 ), where x12
0 5x12(0) and x23

0 5x23(0) are
the initial distances between particles. The termination of the
process when two particles collide gives absorbing boundary
conditions along the axis, i.e.,r(x12,0;t)50 andr(0,x23;t)
50 for all timest.

Thus the original many body problem has been reduced to
the survival of three annihilating random walkers. Given that
one can solve Eq.~7! with the appropriate boundary condi-
tions, the survival probability of the middle particle~which
corresponds to the persistent cluster! can be obtained as

Psurv~ t !5E
0

`

dx12E
0

`

dx23 r~x12,x23;t !. ~8!

When the survival probability decays algebraically,Psurv(t)
;t2uRW, the associated exponentuRW is called the survival
exponent.

III. COMPARISON OF THE SIMULATIONS AND THEORY

A. Details of simulations

The DLCA simulations are done on a lattice of sizeL with
periodic boundary conditions. Concentrationf of sites is
filled with particles and nearest neighbor particles belong to
the same cluster. The initial distribution is either monodis-
perse,ns(0)5d1,s , with equal distancesl 0 between neigh-
boring clusters or random, in which case each site is inde-
pendently filled with probability f. The persistence
exponent is independent of the initial distribution, but the
early time behavior of the persistence probability depends on
it @9#.

In the dynamical evolution a cluster is selected randomly
and time is increased by 1/@N(t)Dmax(t)#. HereN(t) denotes
the number of clusters andDmax(t) is the maximum of the
diffusion coefficients of all the clusters at timet. The cluster
is moved one lattice spacing with cluster size dependent
probabilityD(s)/Dmax(t). If the cluster collides with another
one, the clusters are irreversibly aggregated together and the
values ofN and Dmax are updated. Then a new cluster is
selected and the above procedure is repeated.

The three particle simulation is similar to that of the
DLCA. Initially the distance between particles isl 0. A par-
ticle i P$1,2,3% is selected randomly and it is moved a dis-
tance a either to the left or to the right with probability
Di(t)/D.(t). Here D.(t)5max$D1(t),D2 ,D3(t)% is the
maximum of the diffusion coefficients of the three particles
at that time. The distancea is set to correspond the lattice
constant of the DLCA simulations, i.e.,a51. Irrespective of
the movement, time is increased by 1/@3D.(t)# and the
time-dependent diffusion coefficientsD1(t) and D2(t) are
updated to new values. This procedure continues until a col-
lision occurs. Figure 1 shows examples of configurations that
survive for a long while for negative and positive values of
the diffusion exponent.

The faster the survival probability decays the more com-
putation time is used in simulating systems, which terminate

FIG. 1. Visualization of the three particle system when the initial distancel 0510 for ~a! g522 (z51/4) and~b! g51 (z51). The
probabilities of these configurations are of order 1028 and 1024, respectively. At the final time the ratioD2 /(D1tgz) is about 102 in ~a! and
1023 in ~b!. The dashed lines in~a! show ta behavior witha5375.0~see Sec. III D for details!.
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at early times. In order to sample efficiently the long living,
interesting configurations we use a cloning method@25,26#
for the three particle simulations wheng,0: At timest j we
makenj copies of all the systems, which have survived upto
this time. Typically simulations are averaged over 53106

initializations and the system is copied at times 10, 102, and
103 with 23103, 53104, and 104 copies, respectively. This
enables us to reach probabilities less than 10215.

B. Size-independent diffusion„gÄ0… and crossover behavior

When the diffusion constant of a cluster does not depend
on its size, i.e.,g50, an exact solution is possible as the
collisions of the clusters surrounding a persistent one with
other clusters do not matter@27#. For the same reason the
mean-field approximation becomes exact and reduces to an
old problem of the survival probability of three similar anni-
hilating random walkers@18#. The persistence and survival
exponents attain the value 3/2.

This result can also be obtained from the Eq.~7! for
which this particular case simplifies to

]r

]t
5S ]2r

]x12
2

1
]2r

]x23
2 D 2

]2r

]x12]x23
, ~9!

where we have takenD15D251/2. A coordinate transfor-
mation x5(x121x23),y5(x122x23)/A3 reduces this to a
diffusion equation

]r

]t
5

]2r

]x2
1

]2r

]y2
, ~10!

with the boundary conditionr50 along linesy56x/A3.
This corresponds to a two-dimensional wedge of angleQ
5p/3, in which the survival probability decays ast2p/2Q

;t23/2 @4#.
It is also interesting to know how the asymptotic regime,

where Psurv(t);t2uRW, is reached. In the caseD15D2
5D35D(g50) with the initial distances between particles
beingx12

0 5x23
0 5 l 0 the solution including the first correction

to scaling is given by@19,27#

Psurv~ t !'
1

4A2p
S l 0

2

Dt D
3/2S 12

3

16

l 0
2

Dt D . ~11!

The correction becomes negligible for times much larger
than the crossover timetcr53l 0

2/(16D). For gÞ0 the cor-
rections go in powers of the ratio of the diffusion coeffi-
cients,D2 /D1tgz. For g.0 this is demonstrated in Appen-
dix A and for the corresponding two particle problem it may
be shown exactly~see Appendix B!. Therefore, the crossover
time depends ong as tcr;r (22g)/ugu, where the constantr
'30 according to simulations. Astcr diverges forugu→0,
we can expect that the asymptotic scaling regime can be
reached in simulations only for relatively large values ofugu.

C. Validation of the mean-field theory „gÌ0…

We have not been able to solve Eq.~7! exactly. The rea-
son is that the absorbing boundary conditions together with
the two time scales appearing in the problem make the stan-
dard methods~Laplace or Fourier transforms; polar coordi-
nates! unapplicable. Nor is it possible to transform the equa-
tion to a diffusion equation with simple enough boundary
conditions. However, the full solution is not needed for the
determination of the survival exponent since this is given by
the leading large time behavior whent→`. It would only
provide us information about the crossover effects, which
according to our analysis~see Appendix A! and the numeri-
cal simulations~see below! are rather pronounced wheng is
close to zero.

A change of variables x5(x121x23)/A2,y5(x12

2x23)/A2 transforms Eq.~7! to

]r

]t
5D1tgz

]2r

]x2
1~D1tgz12D2!

]2r

]y2
, ~12!

with the boundary conditionr50 along y56x, i.e., a
wedge of angleQ5p/2. Wheng.0 the constant term is
negligible at long times (D1tgz@D2) and the diffusion be-
comes isotropic. This can be shown by directly solving Eq.
~7! and analyzing the large time behavior of the solution
~Appendix A!. A change to the time scaleT1 @see Eq.~4!#
transforms Eq.~12! to the form of Eq.~10! and the survival
probability Psurv(t);T1

2p/2Q;T1
21;t2(11gz). As z51/(2

2g) the survival exponentuRW(g)52/(22g)52z.
The approximation of neglecting the constant term in Eq.

~7! corresponds to a complete separation of the time scales,
i.e., to a situation, where the middle particle is at rest (D2
50). Thus forg.0 one could simply determine the survival
exponent by considering two independent random walkers
with a fixedabsorbing boundary in between@compare to Fig.
1 ~b!#. In other words, the motion of the ‘‘slow’’ particle
becomes asymptotically irrelevant. This can be exactly
shown for the the corresponding two particle problem~Ap-
pendix B!.

Figure 2 compares the survival and persistence probabili-
ties. The initial distances between particles in the random-
walk simulations are set to be the same as in the DLCA. The
probabilities decay algebraically at large times and the only
difference in the decay is between the amplitudes. This is to
be expected as the transient effects of the growth of the av-
erage cluster size are not taken into account in the random-
walk picture.

The inset shows local exponents, i.e., logarithmic deriva-
tives of the probabilities, which converge to the value ob-
tained from the Fokker-Planck equation,uRW52/(22g) for
g.0 and uRW53/2 for g50. The asymptotic regime is
reached only forg50 andg*0.5. In the latter region the
local exponents saturate, when the ratio of the diffusion co-
efficients is of about 30. For example, forg50.25 this would
corresponds totcr'231010 which is beyond the time
reached in simulations.

Note that the persistence exponent is discontinuous and
nonmonotonic atg50, i.e., 3/25uC(0).uC(01)51. This
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seems first counterintuitive since making some of the clus-
ters to diffuse faster helps others to survive longer! On the
other hand, as time elapses a persistent cluster becomes
slower as compared to an average one. In this way it even-
tually adopts the optimal strategy@28# by becoming station-
ary.

D. Fluctuation dominated persistence„gË0…

For g,0 the diffusion of the clusters surrounding a per-
sistent one slows down. Consider the random-walk picture
and proceeding similarly as forg.0 above. Fixing now par-
ticles 1 and 3 would lead to an interval of fixed length and
hence to an exponentially decaying survival probability.
However, simulations show that the survival decays
stretched exponentially in time,Psurv(t);exp(2CRWtbRW).
Furthermore, as will be shown below, although the surround-
ing particles become slower, their motion cannot be ne-
glected even at the long time limit. This is a collective effect
and in clear contrast to the exactly solvable two particle case,
where the fast particle eventually dominates the survival
~Appendix B!.

In Figure 3 we plot2 ln@Psurv(t)# vs t on a log-log scale
so that a stretched exponential decay corresponds to a
straight line with a slopebRW. The final slope is independent
of the initial distance between particles, and thus the stretch-
ing exponent is universal.

Figure 4 shows the location distributionp(x3 ;t) of the
particle 3~the one for the particle 1 would be the same!. It
scales as

p~x3 ;t !5t2zgS x2bta

tz D ~13!

implying that although the distribution widens astz, the ex-
pectation value of the distance from the origin grows asbta

with a nontrivial exponentz,a,1/2 @see Fig. 1~a!#. The
scaling is similar to the reaction front in the originally sepa-

rated reaction-diffusion systemA1B→C, where the reac-
tion zone becomes sharp at late times, i.e.,z,a @29,30#. It is
striking that the scaling functiong(y) is within the numerical
accuracy a simple Gaussian.

The consequence of Eq.~13! is that the average distance
between the particles 1 and 3 grows@see Fig. 1~a!#. If it
would grow deterministicallyas ta, with a,1/2, the sur-
vival probability would decay asymptotically stretched expo-
nentially with the exponentbdet5122a @31#. For example,
for g522.0 the numerics gives a rough estimatea'0.36
and 122a'0.28, which is in reasonable agreement with the
numerically obtained stretching esponentbRW'0.25~see in-
set of Fig. 3!.

To understand the origin of the new length scaleta the
next logical step is to try to take the length fluctuations of the

FIG. 2. ~a! Comparison between the survival~filled symbols! and persistence~open symbols! probabilities.~b! The corresponding local
exponents. The horizontal lines correspond to the analytic values given byu52/(22g). The data for RW survival are averaged over variable
number of realizations ranging from 109 for g50 to 23107 for g50.5. The DLCA simulations are averaged over 50 000 simulations on a
system of size 55 555. The initial distance between particles is 10@upper curves in Fig.~a!# or 2 @lower curves#.

FIG. 3. Survival probabilities forg522 with l 052 ~dashed!,
3 ~dotted!, and 4~dot dashed!. The solid line is a guide to eye with
a slope bRW50.25. The inset shows how the local stretching
exponents converge to the same value independent of the initial
distancel 0.
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interval into account. We make this using a Lifshitz tail ap-
proach@4#. It is based on the assumption that the main con-
tribution to the survival is provided by extreme configura-
tions, where the particles surrounding the surviving one have
diffused far apart from each other. We write the survival
probability as

Psurv~ t !'E
0

`

dlP~ l ;t !Q~ tu l !, ~14!

where P( l ;t) is the probability distribution of the interval
lengthsl 5x32x1 around a surviving particle at timet and
Q(tu l ); l 21exp(2p2Dt/l2) is the survival probability of a
particle in an interval of lengthl @4,32#. In order to make
progress, we need to know the largel behavior ofP( l ;t). It
scales similarly asp(x3 ;t),

P~ l ;t !5t2zGS l 22bta

tz D , ~15!

where the largey tail of G(y) is Gaussian as the position
distributions of particles 1 and 3 are Gaussian. Although it is
irrelevant in what follows, the smally part of G(y) decays
faster than the largey tail due to the restrictionx3.x1.

Denote the variance of the Gaussian tail ofG(y) by s2.
Then Eq.~14! gives

Psurv~ t !;tz2aE
0

`

dlexpS 2
~ l 22bta!2

2s2t2z
2

p2Dt

l 2 D .

When t→` the integrand becomes sharply peaked and may
be evaluated using the saddle point method. This givesa
5(2z11)/4 and

Psurv~ t !;t (6z21)/4e2Ct(122z)/2
. ~16!

Inserting the value ofa coming from the Lifshitz argument
to the result of an algebraically expanding interval,

bdet5122a, leads to the same streching exponentb5(1
22z)/2. These two results coincide, as a consequence of the
peculiar scaling@Eq. ~15!# and that the tail of the interval
length distribution decays asG(y);exp(2y2). We empha-
size that the fluctuations of the surrounding, slow particles
determine the stretching exponent and that it is purely a co-
incidence that the Lifshitz tail argument gives the same result
as the use of the average value.

The stretching exponentbRW5(122z)/2 has an obvious
interpretation. There are two length scales in the problem.
The first one is related to the random walkers with time-
dependent diffusion coefficients,L1;tz, and the other to the
surviving particle,L2;t1/2. The argument of the exponential
decay is simply the ratio of these two scales in the problem,
Psurv(t);exp(2L2 /L1). Although this result is reasonable,
the calculation above shows the delicacy of the survival: the
distance between the particles 1 and 3 involves a third, non-
trivial length scaleL3;ta with a5(2z11)/4. The above
considerations can also be made by resorting to an argument
which considers the two characteristic time scalesT1
;t11gz andT2;t. It is easy to see, that the ratios between
the scales obey a diffusive like scaling relationL2 /L1

;AT2 /T1 such that any quantity involving the ratio of
length scales may be given in terms of the ratio of the time
scales and vice versa.

In Fig. 5 the survival probabilities are plotted forg,0
~for a similar figure for the persistence see Fig. 3 in Ref.
@10#!. In spite of being able to simulate rather small prob-
abilities the asymptotic regime is not reached in the simula-
tions. Similar problems with a slow convergence to the
asymptotic value have been encountered in other reaction-
diffusion systems@33,34# and they might be overcome by a
more efficient use of the cloning method@25,26#. The inset
of Fig. 5 shows bounds for the stretching exponents as a
function of the dynamic exponentz51/(22g). The upper
bounds are obtained by fitting a line to the three or four
largest time points and measuring the slope. To obtain the
lower bound, we considered the change of the local slope
and extrapolated to 1/t→0, when it was possible. This

FIG. 4. The scaling plot of the location distribution of the right-
most particle in the random-walk simulations forg522. The val-
ues of the scaling exponents arez51/4 anda53/8. The solid line
shows a Gaussian fit to the data.

FIG. 5. The survival probability forg,0. The inset shows the
bounds for the stretching exponents for the survival~filled symbols!
and persistence~open symbols!. For details see text. The dashed
@solid# line is given by (122z)/2 @2(122z)/3#.
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method neglects the saturation of the local exponent after a
finite crossover time and therefore gives a lower bound. For
comparison, the corresponding bounds for persistence are
also shown in the inset. There is a clear difference between
the two. The numerics is consistent with the prediction
bRW5(122z)/2, and for the persistence the data suggest an
expressionbC52(122z)/3.

The difference between the mean-field model and the
DLCA is further elucidated in Fig. 6. It shows that in the
DLCA the distance distribution between the clusters sur-
rounding a persistent one scales similar to that of the cluster
size distribution

P~ l ;t !5L21hS l

L D . ~17!

Hence, the distribution widens at the same rate as the aver-
age distanceL(t);tz grows in contrast to the RW case. For
largex the scaling functionh(x);exp(2bx) and the Lifshitz
tail argument leads to an estimatebL5(122z)/3, which dis-
agrees with the numerics.

The inconsistency is not surprising since in the DLCA
there are fluctuations coming from the statistical nature of
collisions, which are not taken into account in the Lifshitz
approach. More precisely, the diffusion constants of the
neighbors of persistent clusters have some unknown distri-
bution. Furthermore, the diffusion constant also correlates
with the distance from the persistent cluster. These facts to-
gether with the fact that the stretching exponent is deter-
mined by the fluctuations makes an analytical estimation of
the persistence forg,0 hard.

IV. IMPLICATIONS FOR THE CLUSTER SIZE
DISTRIBUTION

We now turn to the relation of the persistence to the clus-
ter size distribution. We concentrate first on the caseg.0,
when the cluster size distribution has a power-law tail at
small cluster sizes. The dynamical scaling together with the
definition of the dynamical and polydispersity exponentsz
and t, respectively, were discussed in the introduction@Eq.

~1!#. The scaling theory further states that all the cluster
number densities decay in a similar manner at large times,
i.e., ns(t)/n1(t)→bs as t→` @35#, wherebs is a constant.
Here the exponent of interest is the universal decay exponent
w, which describes the decreasens(t);t2w.

Using S(t);tz together withf (x);x2t as x→0 in Eq.
~1! givesns(t);t2(22t)zs2t so that the three exponents de-
fined above are related by the scaling relationw5(22t)z
@36#. Therefore the full characterization of the dynamic scal-
ing requires the knowledge of only two of the exponents.
However, even on the mean-field level of Smoluchowski’s
rate equation theory the only readily calculatable exponent
for DLCA is the dynamic exponentz. The difficulty with, for
example, the polydispersity exponentt arises from the fact
that to calculate it requires the knowledge of the whole scal-
ing function @14#. Next we argue how knowing the persis-
tence exponentuC helps to overcome this problem.

Let us start from the trivial size independent case,g50,
for which an exact solution of the cluster size distribution
ns(t) is possible@27#. The actual form of this distribution is
not important for our purposes. The point is that the decay
exponentw53/2 for any short-range correlated initial distri-
bution ns(0). Also the cluster persistence exponent is uni-
versal@9#. Hence, by noticing that for a monodisperse initial
condition,ns(0)5d1,s , the persistence probability is simply
n1(t), we obtain the persistence exponentuC(0)5w(0)
53/2.

The exponentsuC and t should be related also forg
Þ0, since the persistent clusters are those ones, which have
not aggregated with other ones. Asymptotically, the number
of these clusters will be presented by the parts!S(t) of the
cluster size distribution, which in turn is characterized by the
exponentt. Thus the same identificationuC5w can be made
also for 0,g,2 and we are led to the scaling relation

uC5~22t!z. ~18!

The same relation is valid in a different context of the scaling
of intervals between persistent regions in the reaction-
diffusion modelA1A→B @37#. HereuC52z and Eq.~18!
givest(g)50. This is interesting in two respects. First, the
polydispersity exponent is discontinuous asg→0 since
t(0)521Þ05t(01). Although quite uncommon, such an
outcome is possible also on the mean-field level of the rate
equation theory@38#. It is more surprising, that the polydis-
persity exponent is a constant, independent of the value ofg.
It indicates that for anyg.0 the physics of small clusters is
dictated by the fact that they are essentially immobile com-
pared to the larger~average-sized! ones in the system.

Simulations confirm the constant value oft although
again the crossover effects make the analysis intractable near
g50 @10#. The numerically estimated values for the expo-
nents are presented in Table I. The scaling relation~18! is
obeyed within the error bars.

For g,0 the scaling function of the cluster size distribu-
tion behaves asf (x);exp(2Ax2umu) when x→0. Using a
similar reasoning as forg>0 leads now to the relationbC
5umuz. Together with the resultbC52(122z)/3 this sug-
gests thatm(g)52g/3. Direct measurement of the exponent

FIG. 6. The scaling of the distance distribution between the
clusters surrounding a persistent one in DLCA forg520.8.
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m is hard as one would need to compute the scaling function
f (x) for x&0.1 to see the asymptotic behavior. However,
even rough numerics shows thatm(22).21.75, which is
larger than the mean-field value predicted by the Smolu-
chowski’s rate equation theory,m5g. Hence, the spatial
fluctuations help clusters to survive longer.

V. CONCLUSIONS

We have investigated the probability of a cluster to remain
unaggregated in one-dimensional DLCA. The diffusivity of
clusters is taken to vary with size asD(s);sg, which ex-
tends the results known forg50 to the more relevant case of
size dependent diffusion.

The first main result is that the persistence probability
decays as

Psurv~ t !;H exp~2CtbC!, g,0

t23/2, g50

t22/(22g), g.0.

~19!

The stretching exponent fits well to the expressionbC
52(122z)/3, where the dynamic exponent is given byz
51/(22g). Equation~19! shows that one cannot use the
exactly solvable size independent aggregation as a starting
point for a perturbative analysis of the size dependent case.
The second main result is that the decay of the persistence is
related to the dynamic exponentz through the scaling rela-
tions

uC5~22t!z,

bC5umuz,

where the exponentst andm characterize the small size tail
of the cluster size distribution. Hence, by solving for the
persistence one determines the behavior of the cluster size
distribution. Forg>0 the scaling relation and Eq.~19! lead
to a discontinuity of the polydispersity exponent:t(0)5
21, but for 0,g,2 the distribution is flat andt50.

The persistence probability forg>0 is obtained from a
mean-field analysis for three annihilating random walkers. It
explains the discontinuous and nonmonotonic behavior of
the persistence exponent, i.e., why 3/25uC(0).uC(01)
51. This is since forg.0 a persistent cluster eventually
adopts the optimal strategy@28# by becoming more and more
stationary as time goes on. This interpretation is further sup-
ported by the fact that the probability of an originally empty

site to be never occupied by a cluster decays algebraically
with the same exponent as the cluster persistence@9#. The
major consequence of the discontinuity is the divergence of
the crossover time to the asymptotic behavior wheng
→01. This also plagues the scaling of the cluster size dis-
tribution since these two are interconnected.

The mean-field random-walk analysis, which can be ana-
lyzed in the asymptotic limit wheng>0, becomes intrac-
table forg,0. We have thus resorted to numerical studies.
These reveal that while the RW picture adequately describes
the persistence forg>0, it is inadequate forg,0. The rea-
son is that there the persistence is affected by the fluctuations
in the motion of the slowly moving particles around the per-
sistent one. These are taken into account approximately in
the mean-field theory, which results only to a qualitative un-
derstanding of the persistence. Forg.0 the approximation
is practicable as the fluctuations of the slow particle or clus-
ters become asymptotically irrelevant. Forg,0 they are sig-
nificant as the persistence decays much faster than a power
law. As an interesting consequence, the mean-field theory is
applicable when the cluster size distribution is broad around
the mean@g>0: f (x);x2t, x→0# but not when it is nar-
row @g,0; f (x) decays faster than any power forx→0].

The difference between the mean-field random-walk
model and the DLCA is demonstrated by the scaling of the
distribution measuring the distance between the particles
~clusters! enclosing a surviving~persistent! one @see Eqs.
~15! and ~17!#. The main difference is that in the theory the
average distance grows faster than the distribution widens
whereas in the DLCA these both take place at the same rate.
This implies the existence of a new, nontrivial length scale
;ta in the RW problem. A Lifshitz tail argument suggest an
expressiona5(2z11)/4. This leads tobRW5(122z)/2,
which agrees with the simulations. Hence, the argument of
the exponential decay is the ratio of the two natural length
scalest1/2 and tz of the problem. An intriguing detail of the
random-walk model is that according to the numerics the
position distribution of the neighbor of the surviving particle
scales asp(x;t)5t2zg(@x2bta#/tz) with a purely Gaussian
scaling functiong(y). It would be worthwhile to try to show
this analytically and also solve Eq.~7! with appropriate
boundary conditions. This would require new analytic tools
to handle time-dependent absorbing boundary value prob-
lems as the traditional image method cannot be applied. We
believe this to be an unsolved mathematical problem waiting
for solution.

The present study investigates cluster persistence in
diffusion-limited cluster-cluster aggregation. It would be in-
teresting to consider the behavior of unaggregated clusters in
other models, too. Furthermore, we have concentrated only
on the one-dimensional case. It is natural to ask what can be
done in higher dimensions. There a similar simple random-
walk analysis is hardly possible. On the other hand the long
crossover effects nearg50 presumably persist and make
simulation studies hard. Nevertheless, we believe that the
general structure of the problem remains and conclude with
the conjecture that also in higher dimensions the behavior of
the cluster size distribution is determined by the solution of
the cluster persistence problem.

TABLE I. Exponents measured from the numerical data. Forg
50.40 the asymptotic regime is not reached in simulations~except
for z) and only upper bounds are shown.

g z uC t

0.00 0.50060.001 1.5060.02 1.0060.02
0.40 0.62560.001 ,1.35 ,0.10
0.57 0.69960.002 1.4360.05 0.0260.05
1.00 1.0060.01 2.0060.02 0.0060.02
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APPENDIX A: ASYMPTOTIC ANALYSIS OF SURVIVAL
FOR gÌ0

The Fourier transform of Eq.~7! reads

]r̂

]t
52~D21D1tgz!~kx

21ky
2!r̂12D2kxkyr̂, ~A1!

where we have for notational simplicity used variablesx and

y instead ofx12 and x23, respectively. The hat denotes the
Fourier transform andkx and ky are the associated Fourier
variables ofx and y. The solution of Eq.~A1! fulfilling the
initial condition r f(x,y;0)5d(x2x0)d(y2y0) is

r̂ f~kx ,ky ;t !5exp@ ikxx01 ikyy02D2t~kx2ky!2

2D~ t !t~kx
21ky

2!#,

where D(t)5D1tgz/(gz11). The subscriptf refers to the
solution without absorbing boundaries. The inverse trans-
form reduces to calculating Gaussian integrals with the result

r f~x,y;tux0 ,y0!5
1

4ptAD~ t !@2D21D~ t !#
expS 2

@D21D~ t !#@~x2x0!21~y2y0!2#12D2~x2x0!~y2y0!

4tD~ t !@D21D~ t !# D . ~A2!

At the long time limit this reduces to a Gaussian

r f
as~x,y;tux0 ,y0!5

1

4pD~ t !t
expS 2

~x2x0!21~y2y0!2

4D~ t !t D ,

which is nothing but the solution of Eq.~7! for D250. This
validates the approximation made in Sec. III C.

Since the solution~A2! is not symmetric in reflection with
respect to thex andy axis, the method of images frequently
used in problems including absorbing boundaries cannot be
applied to construct the solution which would be zero along
the axes. To obtain an estimate for the survival probability as
a series expansion in powers oft, we neglect the cross-term
2D2(x2x0)(y2y0) in the exponential of Eq.~A2!, and de-
note the resulting radially symmetric part byr f

S. The term
omitted is of the same order int as the termD2@(x2x0)2

1(y2y0)2#, and would hence contribute only on the pref-
actors in the expansion. Now the image method gives the
solution obeyingr50 alongx50 andy50, for x>0 and
y>0

r~x,y;tux0 ,y0!'r f
S~x,y;tux0 ,y0!2r f

S~x,y;tu2x0 ,y0!

2r f
S~x,y;tux0 ,2y0!

1r f
S~x,y;tu2x0 ,2y0!.

Integrating this over the first quadrant$x>0,y>0% yields

Psurv~ t !'
2zx0y0

pD1t2z
@122zR16z2R 21O~R 3!#, ~A3!

whereR5D2 /(D1tgz) denotes the ratio of the diffusion co-
efficients. The asymptotic behavior sets in forR!1, which

indicates the divergence of the crossover time to the
asymptotic behavior wheng→0.

APPENDIX B: TWO PARTICLE SURVIVAL

Consider the survival of two particles, which annihilate at
contact but otherwise evolve according to

ẋ1~ t !5j1~ t !

ẋ2~ t !5j2~ t !,

where^j i(t)&50 and^j i(t)j j (t8)&52Di(t)d i j d(t2t8). Let
the diffusion coefficients of the particles to beD1(t)
5D1tgz and D2(t)5D2, wherez51/(22g). The distance
y(t)5x2(t)2x1(t) between the particles obeys the Langevin
equation

ẏ~ t !5AD1tgz1D2G~ t !,

where^G(t)&50 and^G(t)G(t8)&52d(t2t8). This is of the
standard form@24# and can directly be transformed to a
Fokker-Planck equation

]r~y;t !

]t
5~D21D1tgz!

]2r~y;t !

]y2
, ~B1!

where r(y;t) is the probability density of finding the two
particles at distancey at time t.

The solution of Eq.~B1! fulfilling the boundary and initial
conditions r(0;t)50 and r(y;0)5d(y2y0) is readily
found to be
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r~y;T~ t !!5
1

A4pT @e2(y2y0)2/4T2e2(y1y0)2/4T#,

whereT(t)5D2t1D1t11gz/(11gz). The survival probabil-
ity

Psurv~ t !5E
0

`

dyr~y;t !5erfS y0

A4TD
whose asymptotic behavior at larget is given by

Psurv~ t !;H y0~pD2t !21/2@12R/~4z!1•••#, g,0

y0@p~D11D2!t#21/2@12O~ t !#, g50

y0@pD1t2z/2z#21/2@12z/R1•••#, g.0,

whereR5D2 /(D1tgz) illustrating again the divergence of
the crossover time whenugu→0. The survival exponent
uRW5max$1/2,z%, i.e., it is given by the dynamics of the
faster particle. The interpretation of the result forgÞ0 is
simple: eventually the time scales separate and the slower
particle becomes stationary.
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