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PHYSICAL REVIEW E 66, 051108 (2002
Cluster persistence in one-dimensional diffusion-limited cluster-cluster aggregation

E. K. O. Helle,* P. E. Salmil and M. J. Alava
Laboratory of Physics, Helsinki University of Technology, P. O. Box 1100, FIN-02150 HUT, Finland
(Received 10 June 2002; published 26 November 2002

The persistence probabilitiy(t), of a cluster to remain unaggregated is studied in cluster-cluster aggre-
gation, when the diffusion coefficient of a cluster depends on its seeD(s)~s”. In the mean field the
problem maps to the survival of three annihilating random walkers with time-dependent noise correlations. For
v=0 the motion of persistent clusters becomes asymptotically irrelevant and the mean-field theory provides a
correct description. Foy<0 the spatial fluctuations remain relevant and the persistence probability is over-
estimated by the random walk theory. The decay of persistence determines the small size tail of the cluster size
distribution. For G<y<2 the distribution is flat and, surprisingly, independentyof

DOI: 10.1103/PhysRevE.66.051108 PACS nunider05.40—~a, 05.50+q, 05.70.Ln, 02.50.Ey

[. INTRODUCTION While the size independent diffusioy€ 0) is exactly solv-
able in one dimension, it forms a marginal case between two

Aggregation models are useful in describing various phecompletely different aggregation mechanisihg]. We study
nomena from chemical engineering, material sciences, atmdiere the more physically interesting problem with 0.
sphere research to even astrophydits3]. One general The aim is to study the dependence of cluster persistence
property of these models is that they lead to dynamic scalen the diffusion exponeny and extend the study presented
invariance: when all the lengths are scaled by the charactein Ref.[10]. We also pay attention to the random-waW)
istic length, the system looks the same at different timesproblems that ensue as on a mean-field level the problem is
Lately, studies of first passage problefd$ under the name reduced to the survival of three annihilating random walkers.
persistencg5-7] have shown that not necessarily all the While the y=0 case is readily solvable by various methods
properties of a dynamically scaling system are characterizefl 8,19, already the case of three annihilating particles with
by a single scalg¢8]. Here we address the probability of a unequal diffusion constants is rather involvi@0D]. Here y
cluster to remain intact in an aggregation system and show 0 leads to time-dependent diffusion coefficients, and we
how this quantity and the associated length scale relate to thderive a Fokker-PlanckFP) equation for the survival of
physically relevant issue of the shape of the cluster size dighese particles. Foy=0 its analysis yields an algebraically
tribution. decaying survival probabilityPg(t)~t~"M?  The sur-

In an aggregation system one can define many firstvival exponentdg, is discontinuous and nonmonotonic as it
passage problems and related quantifi@s We study the is given by Ogp(y)=2/(2—vy) for 0<y<2 and gy (0)
probability that a cluster has not aggregated with any other3/2. The numerical comparison of the survival and persis-
one before time [10]. This probability is called cluster per- tence probabilities validates the theory and hefget)
sistence and denoted W(t). Similar problems consider- ~t~ % with 6= gy .
ing uninfected walkers in one-dimensional reaction-diffusion For y<0 simulations show that both the survival and
systemg11] and Potts moddl12] have recently been shown persistence probabilities decay stretched exponentially as
to display interesting behavior. We concentrate on diffusionexp(—Ct*). The Fokker-Planck equation is not amenable to
limited cluster-cluster aggregatiofDLCA) in one dimen- analytic analysis, so we use a Lifshitz tail argument to un-
sion, where the dynamics is dominated by spatial fluctuationglerstand the survival. Such heuristic arguments and numerics
[13]. For high dimensional systems these may be neglecteduggest a stretching exponedgw(y)=—v/(4—27v). The
and on the mean-field level, valid for dimensions higher tharLifshitz tail argument indicates that the exponent is affected
the upper critical dimension, aggregation is well understoody the fluctuations in the motion of the particles that neigh-
[14-14. bor the surviving one. These are taken into account only

The DLCA model is defined so that the nearest neighboapproximately in the mean-field theory and for the DLCA
occupied sites in a lattice are identified as a cluster. Eachumerics givesBc=—2vy/(6—37). A closer examination
cluster diffuses with a size dependent diffusion constantreveals that also the distance distribution between the par-
D(s)~s”, wherey is the diffusion exponent. If a cluster ticles surrounding a surviving one in the mean-field model
collides with another one, the two clusters are irreversiblyscales in a different way than the corresponding distribution
merged together and the aggregate diffuses either fasgter (of the DLCA.
>0) or slower (y<0) than either of the colliding clusters. In addition, we show how the cluster persistence is related

to the cluster size distribution. To clarify the connection, con-
sider the dynamic scaling in DLCA. Both simulations and

*Electronic address: ehe@fyslab.hut.fi experiments show that the cluster size distributigft) (the
"Electronic address: psa@fyslab.hut.fi number of cluster of size per lattice site at tim¢) scales
*Electronic address: mja@fyslab.hut.fi as[1]
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s totically independent. Thus it is sufficient to consider only
%) (1) one persistent cluster and its two neighbors.

The collisions of the surrounding clusters make them big-
goer and increase or decrease the diffusivity. We make the
mean-field approximation that each cluster neighboring a
persistent one will grow as an average cluster does. Hence,
ave replace the true process, where the surrounding clusters
collide at some discrete times, by a continuous one, where

the surrounding clusters grow &t). As D(s)~s” these
clusters will diffuse with time-dependent diffusion coeffi-
cients. In the following analysis we will ignore the possible
0early time crossover effects in the growth of the average
cluster size and the diffusion coefficients of the clusters sur-
rounding a persistent one are taken to follow a true power

universal, i.e., they do not depend on the fine details of théaw at all times. This will only affect the early time behavior.

model. They can, and it is natural to expect that they do The finite extent of clusters is irrelevant for cluster per-
depeﬁd on the dhéfusion exponent sistence and we will consider the three clusters as pointlike
One of the main results of this paper is that the exponentgart'cIes from now on. Lex;(t)(i=1,2,3) denote the posi-

describing the decay of the cluster persistence are related tigns of the par_ticles at timd Sl_JCh thatxl(O)_<x2(O)
these universal exponents as <x3(0). Themotion of these particles is described by the

Langevin equations

ns(t)=8(t)‘2f(

where S(t) ~t* is the average cluster size and the scalin
limit, s—o andS(t)—oo with s/S(t) fixed, is taken. In one
dimension the dynamic exponent 1/(2—vy) [21,22. For
vy=0 the cluster size distribution is broad in the sense th
the scaling function behaves d$x)~x" " as x=s/5(t)
—0. For y<0 the scaling function is bell shaped ahk)
~exp(—Ax““‘) for x—0, whereA is a constant. To deter-
mine the polydispersity exponemt which characterizes the
number of small clusters, is nontrivial even on a mean-fiel
level[14,23 whereas the similar exponentreadily follows
from scaling analysi§15]. All the exponentg, 7, andu are

0c=(2— 1)z, (2a) :
X (D)=¢&(1), ©)

Be=|ulz. (2b) . . . . )
with Gaussian white noises;(t))=0 and (£;(t)¢;(t"))
Quite unexpectedly, the polydispersity exponent is a con=2D;i(t)5;6(t—t’). The overdot denotes derivative with
stant,7=0, for 0<y<2, but discontinuous since(y="0) respect to time and the brackets an ensemble average over
= —1. The reasoning leading to the relatiq@s) and(2b) is  different realizations. The diffusion coefficients of the par-

universally applicable, so that the behavior of the tail of clus-ticles read asD;(t)=Ds(t)=D3t”* and D,(t)=D,. The

ter size distribution might be tackled through cluster persismeaning of a time-dependent diffusion coefficient, say

tence in other models, too. D,(t), is simply that the particle 1 will follow a simple
The outline of the paper is as follows. In Sec. Il the mean-diffusive motion with a diffusion constarid, in the time

field random walk theory is formulated and the associategcale

Fokker-Planck equation is derived. Section Il starts by de-

scribing the simulation methods. Thereafter the mean-field

theory is validated fory=0 by comparing the survival prob-

ability obtained from the analysis of the Fokker-Planck equa-

tion to the simulation results of both the random-walk system As we are interested in the survival of the middle particle

and the DLCA one. Fory<<O a similar comparison shows (x,), the process terminates when eitRg#= X, or X,=X3. It

the effect of spatial fluctuations, and the stretched exponeris convenient to consider the distances between the particles:

tial decay of the survival probability is explained using ax,,(t)=x,(t)—x;(t)=0 and Xp(t) =xX5(t) —x,(t)=0.

Lifshitz tail argument. Section IV concentrates on the rela-These obey similar Langevin equations

tion between the persistence and the small size tail of the

cluster size distribution. The paper ends with conclusions in Xqo(t) =T 15(t)

Sec. V. i (5)

X23(t) =Ta(t),

where  (I'i(1))=(T'25(1))=0 and (I'1()1(t"))
=(Tp3(t)T55(t"))=2(D,+D4t")5(t—t"). The two noises
The two clusters surrounding a persistent one will groware correlated as the motion of the middle particle affects
when they collide with other clustef®ut not with the per- both distances: (T ()T p5(t") )= —(Ex(1) Ex(L))
sistent ong The cluster in the middle will be persistent until =—2D,8(t—t')#0. For y>0 the noise correlations be-
it collides with one of the neighbors. After this the two re- come asymptotically irrelevant, which is not the case for
maining clusters would contribute to persistence only by in-<0.
creasing the mass of the clusters surrounding another persis- To proceed, we transform Eq$5) to a Fokker-Planck
tent cluster. This is negligible at late times, since theequation for the probability densify(x;,,X23;t) of the two
persistent clusters will be separated by many nonpersistenistances at timé¢. Due to the mutual correlations this is
ones, i.e.,t’c>t% In other words, the correlations in the easiest to do by computing the drift and diffusion coefficients
system grow only as” and each persistent cluster is asymp-from their definitions

T, ()= fotdt’Dl(t’)/D1=t7”1/(yz+ 1). (4)

Il. MEAN FIELD: REDUCTION TO A THREE PARTICLE
PROBLEM

051108-2
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FIG. 1. Visualization of the three particle system when the initial distdpeelO for (a) y=—2 (z=1/4) and(b) y=1 (z=1). The
probabilities of these configurations are of order 4@nd 10 *, respectively. At the final time the ratid,/(D,t*?) is about 18 in (a) and
10 2 in (b). The dashed lines ife) showt® behavior witha=2375.0(see Sec. Il D for detai)s

o1
D= AI:T()A—,[<xi(t+ At) = xi(t)),

1
Dij == I|m -

2,1M At ([Xi(t+AD) =X (1) ][ X (t+ A —x;(1)]),

and insert these to the general Fokker-Planck equafidh

2 2 2

ap d d

TS “po+ .

dat izl aXiDlp i,jzzl IX; X Dijp ©)

A straightforward calculation gives

i Pp  Pp p
—=(D,+Dt")| —+ —| — I — 7
at ( 2 1 ) ﬁxiz axga 2(9X123X23 ( )

The initial condition is now p(X42,X23;0)=86(X1
—x2,) 8(Xa3—X29), Wherex%,=x;5(0) and x3;=x,5(0) are

I1l. COMPARISON OF THE SIMULATIONS AND THEORY
A. Details of simulations

The DLCA simulations are done on a lattice of sizeith
periodic boundary conditions. Concentratigh of sites is
filled with particles and nearest neighbor particles belong to
the same cluster. The initial distribution is either monodis-
perse,ng(0)= 4,5, with equal distancek, between neigh-
boring clusters or random, in which case each site is inde-
pendently filled with probability ¢. The persistence
exponent is independent of the initial distribution, but the
early time behavior of the persistence probability depends on
it [9].

In the dynamical evolution a cluster is selected randomly
and time is increased by[M(t) D ,(1)]. HereN(t) denotes
the number of clusters and,,(t) is the maximum of the
diffusion coefficients of all the clusters at tinheThe cluster
is moved one lattice spacing with cluster size dependent
probability D (S)/D na(t). If the cluster collides with another
one, the clusters are irreversibly aggregated together and the
values ofN and D, are updated. Then a new cluster is

the initial distances between particles. The termination of théelected and the above procedure is repeated.
process when two particles collide gives absorbing boundary The three particle simulation is similar to that of the

conditions along the axis, i.ep(X;5,0;t)=0 andp(0X,3;t)
=0 for all timest.

DLCA. Initially the distance between particleslis A par-
ticle i €{1,2,3} is selected randomly and it is moved a dis-

Thus the original many body problem has been reduced tgance a either to the left or to the right with probability
the survival of three annihilating random walkers. Given thatPi(t)/D=(t). Here D (t)=maxDy(t),D,,D3(t)} is the
one can solve Eq7) with the appropriate boundary condi- maximum of the diffusion coefficients of the three particles

tions, the survival probability of the middle particferhich
corresponds to the persistent clustesin be obtained as

Psunkt) = fo XmzJ'O dXa3 p(Xg2,Xz3;1). (8)

When the survival probability decays algebraicaly,(t)
~t~ %w, the associated exponefik, is called the survival
exponent.

at that time. The distanca is set to correspond the lattice
constant of the DLCA simulations, i.ea=1. Irrespective of
the movement, time is increased by 3D-(t)] and the
time-dependent diffusion coefficienf®;(t) and D,(t) are
updated to new values. This procedure continues until a col-
lision occurs. Figure 1 shows examples of configurations that
survive for a long while for negative and positive values of
the diffusion exponent.

The faster the survival probability decays the more com-
putation time is used in simulating systems, which terminate

051108-3
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at early times. In order to sample efficiently the long living, C. Validation of the mean-field theory (y>0)

interesting configuratiqns we use a cloning metlﬁﬁﬁ,za We have not been able to solve Ed) exactly. The rea-

for the three particle simulations when<0: Attimest; we g4 js that the absorbing boundary conditions together with

maken; copies of all the systems, which have survived uptoge (o time scales appearing in the problem make the stan-

this time. Typically simulations are averaged over B (g methodgLaplace or Fourier transforms; polar coordi-

initializations and the system is copied at times ,102" Hnd  nates unapplicable. Nor is it possible to transform the equa-

10° with 2X 10°, 5x 10", and _1_6 copies, respectively. This o to a diffusion equation with simple enough boundary

enables us to reach probabilities less than'£0 conditions. However, the full solution is not needed for the
determination of the survival exponent since this is given by

B. Size-independent diffusion(y=0) and crossover behavior the leading large time behavior wheén-o. It would only

When the diffusion constant of a cluster does not depen@rovide us information about the crossover effects, which
on its size, i.e.,y=0, an exact solution is possible as the @ccording to our analysisee Appendix Aand the numeri-
collisions of the clusters surrounding a persistent one witfal simulationgsee beloware rather pronounced whenis
other clusters do not matté27]. For the same reason the Close to zero.
mean-field approximation becomes exact and reduces to an A change of variables x= (X121 X9/ \2,y= (X1
old problem of the survival probability of three similar anni- —X23)/y2 transforms Eq(7) to

hilating random walker$18]. The persistence and survival 5 5

exponents attain the value 3/2. P _ 9P V2 Ip
This result can also be obtained from the Ead) for ot~ Pt (9X2+(D1t +2D2)(9y2’ (12
which this particular case simplifies to
p P P P with the boundary conditiorp=0 alongy==*x, i.e., a
p_(fr rPy_ 7P (99 Wedge of angle® = /2. Wheny>0 the constant term is
gt \ox3, x5,  IX120Xo3 negligible at long times,t??>D,) and the diffusion be-

comes isotropic. This can be shown by directly solving Eq.
(7) and analyzing the large time behavior of the solution
(Appendix A). A change to the time scal€; [see Eq.(4)]
transforms Eq(12) to the form of Eq.(10) and the survival
probability Pg(t)~T; "0 ~T;1~t~ (17 As z=1/(2
—v) the survival exponenfigpy(y)=2/(2—vy)=2z.
ap  p p The approximation of neglecting the constant term in Eq.
gt §+ P (10 (7) corresponds to a complete separation of the time scales,
y i.e., to a situation, where the middle particle is at rd3p (
=0). Thus fory>0 one could simply determine the survival
with the boundary conditiop=0 along linesy= +x//3. exponent by considering two independent random walkers
This corresponds to a two-dimensional wedge of argle With afixedabsorbing boundary in betwegcompare to Fig.
= /3, in which the survival probability decays 45™2° 1 (b)]. In other words, the motion of the “slow” particle
~t=32[4]. becomes asymptotically irrelevant. This can be exactly
It is also interesting to know how the asymptotic regime,shown for the the corresponding two particle probl&hp-
where Py, (t)~t %R, is reached. In the cas®,=D, Pendix B.

=D4=D(y=0) with the initial distances between particles ~ Figure 2 compares the survival and persistence probabili-
beingx%,=x%,=1, the solution including the first correction t€s. The initial distances between particles in the random-

to scaling is given by19,27) walk simulations are set to be the same as in the DLCA. The
probabilities decay algebraically at large times and the only
difference in the decay is between the amplitudes. This is to

where we have take®,=D,=1/2. A coordinate transfor-
mation X= (X1o+X»3),Y= (X1, X»9)/+/3 reduces this to a
diffusion equation

12 82 312 be expected as the transient effects of the growth of the av-
Psundt) =~ E Dt T 16Dt/ (12) erage cluster size are not taken into account in the random-
walk picture.

The inset shows local exponents, i.e., logarithmic deriva-
The correction becomes negligible for times much largetives of the probabilities, which converge to the value ob-
than the crossover timg,= 3I§/(16D). For y#0 the cor- tained from the Fokker-Planck equatiafiy=2/(2— vy) for
rections go in powers of the ratio of the diffusion coeffi- y>0 and 6gxy=3/2 for y=0. The asymptotic regime is
cients,D, /Dt For y>0 this is demonstrated in Appen- reached only fory=0 andy=0.5. In the latter region the
dix A and for the corresponding two particle problem it may local exponents saturate, when the ratio of the diffusion co-
be shown exactlysee Appendix B Therefore, the crossover efficients is of about 30. For example, fer=0.25 this would
time depends ony ast.~r@="/"l where the constant  corresponds tot,~2x10° which is beyond the time
~30 according to simulations. As, diverges for|y|—0, reached in simulations.
we can expect that the asymptotic scaling regime can be Note that the persistence exponent is discontinuous and
reached in simulations only for relatively large valuesgf nonmonotonic aty=0, i.e., 3/2= c(0)>6(07)=1. This
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b)

EC" EIFi'n"n’

FIG. 2. (a) Comparison between the survivdilled symbolg and persistencéopen symbolsprobabilities.(b) The corresponding local
exponents. The horizontal lines correspond to the analytic values givés BY(2— ). The data for RW survival are averaged over variable
number of realizations ranging from %ér y=0 to 2x 10’ for y=0.5. The DLCA simulations are averaged over 50 000 simulations on a
system of size 55 555. The initial distance between particles {miifer curves in Fig@)] or 2 [lower curves.

seems first counterintuitive since making some of the clusrated reaction-diffusion syste®d+B—C, where the reac-
ters to diffuse faster helps others to survive longer! On theaion zone becomes sharp at late times, zelg [29,30. It is
other hand, as time elapses a persistent cluster becomssiking that the scaling functiog(y) is within the numerical
slower as compared to an average one. In this way it everaccuracy a simple Gaussian.
tually adopts the optimal strate28] by becoming station- The consequence of E¢L3) is that the average distance
ary. between the particles 1 and 3 groj\wee Fig. 13)]. If it
would grow deterministicallyas t*, with «<<1/2, the sur-
vival probability would decay asymptotically stretched expo-
For y<<0 the diffusion of the clusters surrounding a per- nentially with the exponenBqe=1—2a [31]. For example,
sistent one slows down. Consider the random-walk picturggr y=—2.0 the numerics gives a rough estimate-0.36
and proceeding similarly as fgr>0 above. Fixing now par-  and 1-2a~0.28, which is in reasonable agreement with the
ticles 1 and 3 would lead to an interval of fixed length andnumerically obtained stretching espongit,~0.25 (see in-
hence to an exponentially decaying survival probability.get of Fig. 3.
However, simulations show that the survival decays Tg understand the origin of the new length scelethe

stretched exponentially in timeRs,(t) ~exp(—Crut”™).  next logical step is to try to take the length fluctuations of the
Furthermore, as will be shown below, although the surround-

ing particles become slower, their motion cannot be ne-  4¢2
glected even at the long time limit. This is a collective effect
and in clear contrast to the exactly solvable two particle case
where the fast particle eventually dominates the survival
(Appendix B). ]
In Figure 3 we plot—In[Pg,(t)] VSt on a log-log scale __ 10
so that a stretched exponential decay corresponds to .
straight line with a slop@gy - The final slope is independent
of the initial distance between particles, and thus the stretch
ing exponent is universal. 10°
Figure 4 shows the location distributige(xs;t) of the .
particle 3(the one for the particle 1 would be the sami¢ S

. ) | ) | ) | )
scales as 1 00 02 04 06 0.8

D. Fluctuation dominated persistence(y<0)

surv

a
E
]

Xx—bt?
) (13

tZ

p(x3:t)=t‘zg(

implying that although the distribution widens s the ex-
pectation value of the distance from the origin grows#s
with a nontrivial exponenz< a<1/2 [see Fig. 1(a)]. The

Al

1/n() |

10
10°

10
t

3

10*

10

5

FIG. 3. Survival probabilities fory=—2 with ;=2 (dashedq,

3 (dotted, and 4(dot dashell The solid line is a guide to eye with
a slope Brw=0.25. The inset shows how the local stretching
exponents converge to the same value independent of the initial

scaling is similar to the reaction front in the originally sepa-distancel,,.
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FIG. 5. The survival probability foy<<0. The inset shows the
bounds for the stretching exponents for the survifiléd symbols
and persistencéopen symbols For details see text. The dashed
[solid] line is given by (1-2z)/2 [2(1—22)/3].

FIG. 4. The scaling plot of the location distribution of the right-
most particle in the random-walk simulations fg= —2. The val-
ues of the scaling exponents are 1/4 anda=3/8. The solid line
shows a Gaussian fit to the data.

. . . . - . Bae=1— 2, leads to the same streching expongnt (1
interval into account. We make this using a Lifshitz tail ap- —22)/2. These two results coincide, as a consequence of the

proach[4]. It is based on the assumption that the main conypecyliar scalingEq. (15)] and that the tail of the interval
tribution to the survival is provided by extreme configura-jength distribution decays a8(y)~exp(-y?. We empha-
tions, where the particles surrounding the surviving one havgjze that the fluctuations of the surrounding, slow particles
diffused far apart from each other. We write the survivalgetermine the stretching exponent and that it is purely a co-
probability as incidence that the Lifshitz tail argument gives the same result
. as the use of the average value.
Psur\(t)wj' dIP(1;H)Q(t|), (14) The stretching exponerigy=(1—22)/2 has an obvious
0 interpretation. There are two length scales in the problem.
The first one is related to the random walkers with time-
dependent diffusion coefficients; ~t# and the other to the
surviving particle L ,~t'2 The argument of the exponential
decay is simply the ratio of these two scales in the problem,
Psurndt) ~exp(—L,/L,). Although this result is reasonable,
the calculation above shows the delicacy of the survival: the
distance between the particles 1 and 3 involves a third, non-
) trivial length scaleL;~t* with a=(2z+1)/4. The above

where P(l;t) is the probability distribution of the interval
lengthsl =x3;—x; around a surviving particle at timeand
Q(t|)~1"texp(—#*Dt/I? is the survival probability of a
particle in an interval of length [4,32]. In order to make
progress, we need to know the ladgeehavior ofP(I;t). It
scales similarly ap(xs;t),

| —2bt”

tZ

(15) considerations can also be made by resorting to an argument
which considers the two characteristic time scaleg
~t1"72 and T,~t. It is easy to see, that the ratios between

where the largey tail of G(y) is Gaussian as the position the scales obey a diffusive like scaling relatian /L,

distributions of particles 1 and 3 are Gaussian. Although it is-\/T,/T, such that any quantity involving the ratio of

irrelevant in what follows, the smayl part of G(y) decays |ength scales may be given in terms of the ratio of the time

P(l;t)=t *G

faster than the large tail due to the restrictiomxz>Xx;. scales and vice versa.
Denote the variance of the Gaussian tailGfy) by . In Fig. 5 the survival probabilities are plotted for<0
Then Eq.(14) gives (for a similar figure for the persistence see Fig. 3 in Ref.
. ) [10]). In spite of being able to simulate rather small prob-
b \(t)fth“J’mdlexp( _ (I=2bt")" 77Dt abilities the asymptotic regime is not reached in the simula-
sur 0 2 52t22 2 | tions. Similar problems with a slow convergence to the

asymptotic value have been encountered in other reaction-

Whent— the integrand becomes sharply peaked and magliffusion systemg33,34 and they might be overcome by a
be evaluated using the saddle point method. This gives more efficient use of the cloning meth¢#5,2¢. The inset
=(2z+1)/4 and of Fig. 5 shows bounds for the stretching exponents as a

function of the dynamic exponent=1/(2— y). The upper
(16) bounds are obtained by fitting a line to the three or four

largest time points and measuring the slope. To obtain the
Inserting the value o& coming from the Lifshitz argument lower bound, we considered the change of the local slope
to the result of an algebraically expanding interval,and extrapolated to &/~0, when it was possible. This

Poundt) ~ 1(62-1)/4g— Ct(l—ZZ)IZ.
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T ] (1)]. The scaling theory further states that all the cluster
number densities decay in a similar manner at large times,
i.e., ng(t)/ny(t)—bg ast—oo [35], wherebs is a constant.
. Here the exponent of interest is the universal decay exponent
] w, which describes the decreasgt)~t".
Using S(t) ~t* together withf(x)~x"7 asx—0 in Eq.
) (1) givesng(t)~t~(>~7%s77 50 that the three exponents de-
] fined above are related by the scaling relatws (2— 1)z
[36]. Therefore the full characterization of the dynamic scal-
ing requires the knowledge of only two of the exponents.
However, even on the mean-field level of Smoluchowski’s
rate equation theory the only readily calculatable exponent
for DLCA is the dynamic exponerzt The difficulty with, for
0.1 T ) 3 example, the polydispersity exponentrises from the fact
1/L that to calculate it requires the knowledge of the whole scal-
FIG. 6. The scaling of the distance distribution between the!NY function[14]. Next we argue how knowmg the persis-
clusters surrounding a persistent one in DLCA for —0.8. tence exponendc helps to overcome this problem.

Let us start from the trivial size independent cage;,0,
method neglects the saturation of the local exponent after #r Which an exact solution of the cluster size distribution
finite crossover time and therefore gives a lower bound. FoPs(t) is possiblg27]. The actual form of this distribution is
comparison, the corresponding bounds for persistence afot important for our purposes. The point is that the decay
also shown in the inset. There is a clear difference betweef*Ponentv=3/2 for any short-range correlated initial distri-
the two. The numerics is consistent with the predictionbution ns(0). Also the cluster persistence exponent is uni-
Brw=(1—22)/2, and for the persistence the data suggest a¥ersal[9]. Hence, by noticing that for a monodisperse initial
expressionde=2(1—22)/3. condition,ns(0)= 6,5, the persistence probability is simply

The difference between the mean-field model and théi(t), we obtain the persistence exponef(0)=w(0)
DLCA is further elucidated in Fig. 6. It shows that in the =3/2.
DLCA the distance distribution between the clusters sur- The exponentsic and 7 should be related also foy

rounding a persistent one scales similar to that of the cluste¥ 0. since the persistent clusters are those ones, which have
size distribution not aggregated with other ones. Asymptotically, the number

of these clusters will be presented by the Ea#S(t) of the
I ) cluster size distribution, which in turn is characterized by the
E .

P(i=L""h (17 exponentr. Thus the same identificatiof.=w can be made

also for 0<y<2 and we are led to the scaling relation

Hence, the distribution widens at the same rate as the aver-
age distancé (t)~t? grows in contrast to the RW case. For bc=(2-1)z. (18)
largex the scaling functior(x) ~exp(—bx) and the Lifshitz L o . i
tail argument leads to an estima@g= (1 — 22)/3, which dis- The_ same relation is valid ina dlfferent_ context of the scal_lng
agrees with the numerics. of mFervaIs between persistent regions in the reaction-

The inconsistency is not surprising since in the DLCAdiffusion modelA+A—(J [37]. Here 6c=2z and Eq.(18)
there are fluctuations coming from the statistical nature ofives7(y)=0. This is interesting in two respects. First, the
collisions, which are not taken into account in the Lifshitz POlydispersity exponent is discontinuous 3s-0 since
approach. More precisely, the diffusion constants of them(0)=—1#0=7(0"). Although quite uncommon, such an
neighbors of persistent clusters have some unknown distrRutcome is possible also on the mean-field level of the rate
bution. Furthermore, the diffusion constant also correlate§guation theory38]. It is more surprising, that the polydis-
with the distance from the persistent cluster. These facts td?€rsity €xponentis a constant, independent of the valye of
gether with the fact that the stretching exponent is deterlt indicates that for any>0 the physics of small clusters is
mined by the fluctuations makes an analytical estimation offictated by the fact that they are essentially immobile com-
the persistence fop<0 hard. pared to the largefaverage-sizedones in the system.

Simulations confirm the constant value ef although
again the crossover effects make the analysis intractable near
y=0 [10]. The numerically estimated values for the expo-
nents are presented in Table |. The scaling relafit®) is

We now turn to the relation of the persistence to the clusobeyed within the error bars.
ter size distribution. We concentrate first on the cgse0, For y<<0 the scaling function of the cluster size distribu-
when the cluster size distribution has a power-law tail ation behaves aé(x)~exp(—Ax*‘“‘) when x—0. Using a
small cluster sizes. The dynamical scaling together with thesimilar reasoning as foy=0 leads now to the relatioc
definition of the dynamical and polydispersity exponents =|u|z. Together with the resulBc=2(1—22)/3 this sug-
and 7, respectively, were discussed in the introductiig.  gests thaj(y) =27y/3. Direct measurement of the exponent

IV. IMPLICATIONS FOR THE CLUSTER SIZE
DISTRIBUTION
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TABLE I. Exponents measured from the numerical data. for site to be never occupied by a cluster decays algebraically
=0.40 the asymptotic regime is not reached in simulatiexsept  wijth the same exponent as the cluster persist¢ateThe
for z) and only upper bounds are shown. major consequence of the discontinuity is the divergence of
the crossover time to the asymptotic behavior when

Y z Oc 4 —0%. This also plagues the scaling of the cluster size dis-
0.00 0.500-0.001 1.56-0.02 1.06-0.02 tribution since these two are interconnected.
0.40 0.625- 0.001 <135 <0.10 The mean-field random-walk analysis, which can be ana-
057 0.699- 0.002 1.430.05 0.02-0.05 lyzed in the asymptotic limit whery=0, becomes intrac-
1.00 1.00-0.01 2.00-0.02 0.00-0.02 table for y<<0. We have thus resorted to numerical studies.

These reveal that while the RW picture adequately describes
the persistence fop=0, it is inadequate foy<0. The rea-

w is hard as one would need to compute the scaling functiogon is that there the persistence is affected by the fluctuations
f(x) for x<0.1 to see the asymptotic behavior. However,in the motion of the slowly moving particles around the per-
even rough numerics shows that—2)>—1.75, which is  sistent one. These are taken into account approximately in
larger than the mean-field value predicted by the Smoluthe mean-field theory, which results only to a qualitative un-
chowski's rate equation theory,=1y. Hence, the spatial derstanding of the persistence. Fpr0 the approximation

fluctuations help clusters to survive longer. is practicable as the fluctuations of the slow particle or clus-
ters become asymptotically irrelevant. For 0 they are sig-
V. CONCLUSIONS nificant as the persistence decays much faster than a power

law. As an interesting consequence, the mean-field theory is
We have investigated the probability of a cluster to remainapplicable when the cluster size distribution is broad around
unaggregated in one-dimensional DLCA. The diffusivity of the mear{ y=0: f(x)~x"", x—0] but not when it is nar-
clusters is taken to vary with size &(s)~s”, which ex-  row [y<0; f(x) decays faster than any power for-0].
tends the results known for=0 to the more relevant case of  The difference between the mean-field random-walk

size dependent diffusion. model and the DLCA is demonstrated by the scaling of the
The first main result is that the persistence probabilitydistribution measuring the distance between the particles
decays as (clusters enclosing a survivingpersistent one [see Egs.
(15 and(17)]. The main difference is that in the theory the
exp(—Ctfe),  y<0 average distance grows faster than the distribution widens
Pon(t)~9 %2 v=0 (199  whereas in the DLCA these both take place at the same rate.

This implies the existence of a new, nontrivial length scale
~t“ in the RW problem. A Lifshitz tail argument suggest an
The stretching exponent fits well to the expressigp  €XPressiona=(2z+1)/4. This leads toBry=(1-22)/2,
=2(1—227)/3, where the dynamic exponent is given by which agrees with the simulations. Hence, the argument of
=1/(2— v) Iéquation(lg) shows that one cannot use the the exponential decay is the ratio of the two natural length
' 172 o i
exactly solvable size independent aggregation as a startirgg@lest™ - andt* of the problem. An intriguing detail of the
point for a perturbative analysis of the size dependent casé2ndom-walk model is that according to the numerics the
The second main result is that the decay of the persistence ROSItION d'St”bUt'o_”ZOf the ne|ghE)or of the surviving particle
related to the dynamic exponenthrough the scaling rela- Scales ap(x;t)=t"“g([x—bt*]/t*) with a purely Gaussian

t_Z/(Z_V), v>0.

tions scaling functiong(y). It would be worthwhile to try to show
this analytically and also solve Ed7) with appropriate
O0c=(2—1)z, boundary conditions. This would require new analytic tools
to handle time-dependent absorbing boundary value prob-
Bc=|u|z, lems as the traditional image method cannot be applied. We

believe this to be an unsolved mathematical problem waiting

where the exponents and i characterize the small size tail for solution.
of the cluster size distribution. Hence, by solving for the The present study investigates cluster persistence in
persistence one determines the behavior of the cluster siz#iffusion-limited cluster-cluster aggregation. It would be in-
distribution. Fory=0 the scaling relation and E@L9) lead teresting to consider the behavior of unaggregated clusters in
to a discontinuity of the polydispersity exponent{0)= other models, too. Furthermore, we have concentrated only
—1, but for 0<y<2 the distribution is flat and=0. on the one-dimensional case. It is natural to ask what can be

The persistence probability foy=0 is obtained from a done in higher dimensions. There a similar simple random-
mean-field analysis for three annihilating random walkers. Itwalk analysis is hardly possible. On the other hand the long
explains the discontinuous and nonmonotonic behavior o€rossover effects neay=0 presumably persist and make
the persistence exponent, i.e., why 3/2-(0)>6:(0") simulation studies hard. Nevertheless, we believe that the
=1. This is since fory>0 a persistent cluster eventually general structure of the problem remains and conclude with
adopts the optimal strate28] by becoming more and more the conjecture that also in higher dimensions the behavior of
stationary as time goes on. This interpretation is further supthe cluster size distribution is determined by the solution of
ported by the fact that the probability of an originally empty the cluster persistence problem.
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initial condition p;(X,y;0)= 8(X—Xg) 8(Y — Vo) is

E.K.O.H. thanks F. Leyvraz and S. Redner for proposin
the Lifshitz tail argument for the survival whep<O.

APPENDIX A: ASYMPTOTIC ANALYSIS OF SURVIVAL
FOR y>0 R _ _ 5
pi(Ky,ky ;) =exgdik,Xo+ikyyo— Dot (k,—ky)

The Fourier transform of E(7) reads s o
- D(t)t(kx+ ky)]y

— 2 AR ~
ﬁ__(D2+Dltﬂ)(kX"'ky)P"'ZDkakyP' (AL where D(t)=D 4t/ (yz+1). The subscripf refers to the
solution without absorbing boundaries. The inverse trans-

where we have for notational simplicity used variablend  form reduces to calculating Gaussian integrals with the result

_ 1 [D+D(t) ][ (X—X0) 2+ (Y~ Y0)?]+ 2D 2(X—Xo) (Y~ Yo)
pi(X,Y:tXo,Yo) = Xp — . (A2)
47t\D(t)[2D,+D(1)] 4D(1)[D+D(1)]
|
At the long time limit this reduces to a Gaussian indicates the divergence of the crossover time to the

asymptotic behavior whep—0.

a5y v 1 (X=X0)?+(y—¥0)®
pfS(X!y1t|X01yO)_meX N 4D(t)t ,

which is nothing but the solution of Eq7) for D,=0. This
validates the approximation made in Sec. Il C.

Since the solutioifA2) is not symmetric in reflection with
respect to thex andy axis, the method of images frequently Xy (1) = &4(1)
used in problems including absorbing boundaries cannot be _ ! !
applied to construct the solution which would be zero along Xo(t)=&5(1),
the axes. To obtain an estimate for the survival probability as
a series expansion.in powers tofvve_neglect the cross-term where(&(1))=0 and(&(t)&(t"))=2D;(t) &; 8(t—t"). Let
2D5(X—X0)(Y—Yo) in the exponential of Eq(A2), and de-  the diffusion coefficients of the particles to bBy(t)
note the resulting radially symmetric part b)?. The term =D;t”? and D,(t)=D,, wherez=1/(2— ). The distance

omitted is of the same order inas the termD,[(X—Xg)®  y(t)=x,(t)—x,(t) between the particles obeys the Langevin
+(y—Yo)?], and would hence contribute only on the pref- equation
actors in the expansion. Now the image method gives the

solution obeyingp=0 alongx=0 andy=0, for x=0 and

APPENDIX B: TWO PARTICLE SURVIVAL

Consider the survival of two particles, which annihilate at
contact but otherwise evolve according to

y=0 y(t)=\Dt"+D,I'(t)
(XYt X0 Vo) = pS(X,V:t|X0, Vo) — pS(X, Vit — X0, Vo) where(T'(t))=0 and(I"(t)I'(t"))=245(t—1t"). This is of the
POGY:tl0.Y0)=px.YitXo.Yo) ~piX.Y it =Xo Yo standard form[24] and can directly be transformed to a
— pP(X,Y;t|Xo, — Yo) Fokker-Planck equation
+pP(X,Y;t| = X0, —Yo)-
Integrating this over the first quadraj=0,y=0} yields &pg' ) =(D,+D4t??) ;;(y 32 (B1)
y?
\“)w Xoyo[l 27R+622R2+O(R%)], (A3) Wherep(y:t) is the probability density of finding the two
sur

particles at distancg at timet.
The solution of Eq(B1) fulfilling the boundary and initial
whereR=D,/(D;t??) denotes the ratio of the diffusion co- conditions p(0;t)=0 and p(y;0)=45(y—yo) is readily
efficients. The asymptotic behavior sets in for<1, which  found to be
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yo(mD,t) Y{1-RI(42)+---], <O

Poun(t)~1 Yol m(D1+Do)t] ¥{1-0(1)], y=0
yol D t%/2z] Y4 1—-2zIR+---], >0,

! %e,(y,yo)zm_e,(wyo)zm],

p(y;1(t))= e,

where7(t) =D,t+ D t** ¥?/(1+ yz). The survival probabil-
ity where R=D,/(D;t??) illustrating again the divergence of
the crossover time whelry|—0. The survival exponent

I e Yo Orw=max1/2z}, i.e., it is given by the dynamics of the

Paurd )= J; dyp(y,t)—erf( \/4—7-) faster particle. The interpretation of the result fp# 0 is
simple: eventually the time scales separate and the slower

whose asymptotic behavior at largés given by particle becomes stationary.
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