26 research outputs found
Detrital Nutrient Content and Leaf Species Differenitally Affect Growth and Nutritional Regulation of Detritivores
© 2018 The Authors Resource nutrient content and identity are common bottom–up controls on organismal growth and nutritional regulation. One framework to study these factors, ecological stoichiometry theory, predicts that elevated resource nitrogen (N) and phosphorus (P) contents enhance organism growth by alleviating constraints on N and P acquisition. However, the regulatory mechanisms underlying this response – including whether responses depend on resource identity – remain poorly understood. In this study, we tested roles of detrital N and P contents and identity (leaf species) in constraining growth of aquatic invertebrate detritivores. We synthesized results from seven detritivore species fed wide nutrient gradients of oak and maple detritus in the laboratory. Across detritivore taxa, we used a meta-analytic approach quantifying effects of detrital leaf species and N and P contents on growth, consumption, and N- and P-specific assimilation and growth efficiencies. Detritivore growth rates increased on higher-N and P detritus and on oak compared to maple detritus. Notably, the mechanisms of improved growth differed between the responses to detrital nutrients versus leaf species, with the former driven by greater consumption rates despite lower assimilation efficiencies on higher-nutrient detritus, and the latter driven by improved N and P assimilation and N growth efficiencies on oak detritus. These findings suggest animal nutrient acquisition changes flexibly in response to resource changes, altering the fate of detrital N and P throughout regulation. We affirm resource identity and nutrients as important bottom–up controls, but suggest these factors act through separate pathways to affect organism growth and thereby change detrital ecosystems under anthropogenic forest compositional change and nutrient enrichment
Interspecific Homeostatic Regulation and Growth Across Aquatic Invertebrate
Across resource quality gradients, primary consumers must regulate homeostasis and release of nutrients to optimize growth and fitness. Based primarily on internal body composition, the ecological stoichiometry theory (EST) offers a framework to generalize interspecific patterns of these responses, yet the predictions and underlying assumptions of EST remain poorly tested across many species. We used controlled laboratory feeding experiments to measure homeostasis, nutrient release, and growth across seven field-collected aquatic invertebrate detritivore taxa fed wide resource carbon:nitrogen (C:N) and carbon:phosphorus (C:P) gradients. We found that most invertebrates exhibited strict stoichiometric homeostasis (average 1/H = − 0.018 and 0.026 for C:N and C:P, respectively), supporting assumptions of EST. However, the stoichiometry of new tissue production during growth intervals (growth stoichiometry) deviated − 30 to + 54% and − 145 to + 74% from initial body C:N and C:P, respectively, and across species, growth stoichiometry was not correlated with initial body stoichiometry. Notably, smaller non- and hemimetabolous invertebrates exhibited low, decreasing growth C:N and C:P, whereas larger holometabolous invertebrates exhibited high, often increasing growth C:N and C:P. Despite predictions of EST, interspecific sensitivity of egestion stoichiometry and growth rates to the resource gradient were weakly related to internal body composition across species. While the sensitivity of these patterns differed across taxa, such differences carried a weak phylogenetic signal and were not well predicted by EST. Our findings suggest that traits beyond internal body composition, such as feeding behavior, selective assimilation, and ontogeny, are needed to generalize interspecific patterns in consumer growth and nutrient release across resource quality gradients
Data from: Detrital nutrient content and leaf species differentially affect growth and nutritional regulation of detritivores
Resource nutrient content and identity are common bottom-up controls on organismal growth and nutritional regulation. One framework to study these factors, ecological stoichiometry theory, predicts that elevated resource nitrogen (N) and phosphorus (P) contents enhance organism growth by alleviating constraints on N and P acquisition. However, the regulatory mechanisms underlying this response – including whether responses depend on resource identity – remain poorly understood. In this study, we tested roles of detrital N and P contents and identity (leaf species) in constraining growth of aquatic invertebrate detritivores. We synthesized results from seven detritivore species fed wide nutrient gradients of oak and maple detritus in the laboratory. Across detritivore taxa, we used a meta-analytic approach quantifying effects of detrital leaf species and N and P contents on growth, consumption, and N- and P-specific assimilation and growth efficiencies. Detritivore growth rates increased on higher-N and P detritus and on oak compared to maple detritus. Notably, the mechanisms of improved growth differed between the responses to detrital nutrients versus leaf species, with the former driven by greater consumption rates despite lower assimilation efficiencies on higher-nutrient detritus, and the latter driven by improved N and P assimilation and N growth efficiencies on oak detritus. These findings suggest animal nutrient acquisition changes flexibly in response to resource changes, altering the fate of detrital N and P throughout regulation. We affirm resource identity and nutrients as important bottom-up controls, but suggest these factors act through separate pathways to affect organism growth and thereby change detrital ecosystems under anthropogenic forest compositional change and nutrient enrichment
Interspecific Homeostatic Regulation and Growth Across Aquatic Invertebrate Detritivores: A Test of Ecological Stoichiometry Theory
Across resource quality gradients, primary consumers must regulate homeostasis and release of nutrients to optimize growth and fitness. Based primarily on internal body composition, the ecological stoichiometry theory (EST) offers a framework to generalize interspecific patterns of these responses, yet the predictions and underlying assumptions of EST remain poorly tested across many species. We used controlled laboratory feeding experiments to measure homeostasis, nutrient release, and growth across seven field-collected aquatic invertebrate detritivore taxa fed wide resource carbon:nitrogen (C:N) and carbon:phosphorus (C:P) gradients. We found that most invertebrates exhibited strict stoichiometric homeostasis (average 1/H = − 0.018 and 0.026 for C:N and C:P, respectively), supporting assumptions of EST. However, the stoichiometry of new tissue production during growth intervals (growth stoichiometry) deviated − 30 to + 54% and − 145 to + 74% from initial body C:N and C:P, respectively, and across species, growth stoichiometry was not correlated with initial body stoichiometry. Notably, smaller non- and hemimetabolous invertebrates exhibited low, decreasing growth C:N and C:P, whereas larger holometabolous invertebrates exhibited high, often increasing growth C:N and C:P. Despite predictions of EST, interspecific sensitivity of egestion stoichiometry and growth rates to the resource gradient were weakly related to internal body composition across species. While the sensitivity of these patterns differed across taxa, such differences carried a weak phylogenetic signal and were not well predicted by EST. Our findings suggest that traits beyond internal body composition, such as feeding behavior, selective assimilation, and ontogeny, are needed to generalize interspecific patterns in consumer growth and nutrient release across resource quality gradients
Stream Vulnerability to Widespread and Emergent Stressors: A Focus on Unconventional Oil and Gas
<div><p>Multiple stressors threaten stream physical and biological quality, including elevated nutrients and other contaminants, riparian and in-stream habitat degradation and altered natural flow regime. Unconventional oil and gas (UOG) development is one emerging stressor that spans the U.S. UOG development could alter stream sedimentation, riparian extent and composition, in-stream flow, and water quality. We developed indices to describe the watershed sensitivity and exposure to natural and anthropogenic disturbances and computed a vulnerability index from these two scores across stream catchments in six productive shale plays. We predicted that catchment vulnerability scores would vary across plays due to climatic, geologic and anthropogenic differences. Across-shale averages supported this prediction revealing differences in catchment sensitivity, exposure, and vulnerability scores that resulted from different natural and anthropogenic environmental conditions. For example, semi-arid Western shale play catchments (Mowry, Hilliard, and Bakken) tended to be more sensitive to stressors due to low annual average precipitation and extensive grassland. Catchments in the Barnett and Marcellus-Utica were naturally sensitive from more erosive soils and steeper catchment slopes, but these catchments also experienced areas with greater UOG densities and urbanization. Our analysis suggested Fayetteville and Barnett catchments were vulnerable due to existing anthropogenic exposure. However, all shale plays had catchments that spanned a wide vulnerability gradient. Our results identify vulnerable catchments that can help prioritize stream protection and monitoring efforts. Resource managers can also use these findings to guide local development activities to help reduce possible environmental effects.</p></div
Average HUC12 percent change (%Δ, overall average sensitivity or exposure-sensitivity or exposure with variable removed *100) and the standard deviation (stdev) in change.
<p><sup>1</sup>(NLCD class 41 + 42 + 43 + 52 + 71).</p><p><sup>2</sup>(NLCD class 90 + 95).</p><p><sup>3</sup>(NLCD class 81).</p><p><sup>4</sup>(NLCD class 82).</p><p>Removing a variable from the overall scoring always reduced catchment sensitivity or exposure values (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0137416#sec002" target="_blank">Methods</a>).</p
HUC12 vulnerability scores (sensitivity x exposure) in each shale play.
<p>Lighter colors illustrate lower values or lower vulnerability. Greater vulnerability was predicted to indicate greater potential for biological degradation with future development; however, some catchments may already have suffered significant species loss from multiple pre-existing stressors. Such loss may have resulted in a community dominated by tolerant species and thus be less vulnerable to future development than what is presented. Biological data are needed to resolve this issue.</p
Land cover and land use values are shown as cluster results for HUC12s.
<p>Cluster scores were mapped to visualize geographic trends and descriptive statistics were computed to identify unique characteristics of the ten cluster groups. Refer to <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0137416#pone.0137416.s002" target="_blank">S2 Table</a> for cluster results.</p