12 research outputs found

    Growth factor-mediated augmentation of long bones: evaluation of a BMP-7 loaded thermoresponsive hydrogel in a murine femoral intramedullary injection model

    Get PDF
    Background Due to our aging population, an increase in proximal femur fractures can be expected, which is associated with impaired activities of daily living and a high risk of mortality. These patients are also at a high risk to suffer a secondary osteoporosis-related fracture on the contralateral hip. In this context, growth factors could open the field for regenerative approaches, as it is known that, i.e., the growth factor BMP-7 (bone morphogenetic protein 7) is a potent stimulator of osteogenesis. Local prophylactic augmentation of the proximal femur with a BMP-7 loaded thermoresponsive hydrogel during index surgery of an osteoporotic fracture could be suitable to reduce the risk of further osteoporosis-associated secondary fractures. The present study therefore aims to test the hypothesis if a BMP-7 augmented hydrogel is an applicable carrier for the augmentation of non-fractured proximal femurs. Furthermore, it needs to be shown that the minimally invasive injection of a hydrogel into the mouse femur is technically feasible. Methods In this study, male C57BL/6 mice (n = 36) received a unilateral femoral intramedullary injection of either 100 μl saline, 100 μl 1,4 Butan-Diisocyanat (BDI)-hydrogel, or 100 μl hydrogel loaded with 1 μg of bone morphogenetic protein 7. Mice were sacrificed 4 and 12 weeks later. The femora were submitted to high-resolution X-ray tomography and subsequent histological examination. Results Analysis of normalized CtBMD (Cortical bone mineral density) as obtained by X-ray micro-computed tomography analysis revealed significant differences depending on the duration of treatment (4 vs 12 weeks; p < 0.05). Furthermore, within different anatomically defined regions of interest, significant associations between normalized TbN (trabecular number) and BV/TV (percent bone volume) were noted. Histology indicated no signs of inflammation and no signs of necrosis and there were no cartilage damages, no new bone formations, or new cartilage tissues, while BMP-7 was readily detectable in all of the samples. Conclusions In conclusion, the murine femoral intramedullary injection model appears to be feasible and worth to be used in subsequent studies that are directed to examine the therapeutic potential of BMP-7 loaded BDI-hydrogel. Although we were unable to detect any significant osseous effects arising from the mode or duration of treatment in the present trial, the effect of different concentrations and duration of treatment in an osteoporotic model appears of interest for further experiments to reach translation into clinic and open new strategies of growth factor-mediated augmentation

    Basis set generation for quantum dynamics simulations using simple trajectory-based methods

    Get PDF
    Methods for solving the time-dependent Schrödinger equation generally employ either a global static basis set, which is fixed at the outset, or a dynamic basis set, which evolves according to classical-like or variational equations of motion; the former approach results in the well-known exponential scaling with system size, while the latter can suffer from challenging numerical problems, such as singular matrices, as well as violation of energy conservation. Here, we suggest a middle road: building a basis set using trajectories to place time-independent basis functions in the regions of phase space relevant to wave function propagation. This simple approach, which potentially circumvents many of the problems traditionally associated with global or dynamic basis sets, is successfully demonstrated for two challenging benchmark problems in quantum dynamics, namely, relaxation dynamics following photoexcitation in pyrazine, and the spin Boson model

    Fusion of Normoxic- and Hypoxic-Preconditioned Myoblasts Leads to Increased Hypertrophy

    Get PDF
    Injuries, high altitude, and endurance exercise lead to hypoxic conditions in skeletal muscle and sometimes to hypoxia-induced local tissue damage. Thus, regenerative myoblasts/satellite cells are exposed to different levels and durations of partial oxygen pressure depending on the spatial distance from the blood vessels. To date, it is unclear how hypoxia affects myoblasts proliferation, differentiation, and particularly fusion with normoxic myoblasts. To study this, we investigated how 21% and 2% oxygen affects C2C12 myoblast morphology, proliferation, and myogenic differentiation and evaluated the fusion of normoxic- or hypoxic-preconditioned C2C12 cells in 21% or 2% oxygen in vitro. Out data show that the long-term hypoxic culture condition does not affect the proliferation of C2C12 cells but leads to rounder cells and reduced myotube formation when compared with myoblasts exposed to normoxia. However, when normoxic- and hypoxic-preconditioned myoblasts were differentiated together, the resultant myotubes were significantly larger than the control myotubes. Whole transcriptome sequencing analysis revealed several novel candidate genes that are differentially regulated during the differentiation under normoxia and hypoxia in mixed culture conditions and may thus be involved in the increase in myotube size. Taken together, oxygen-dependent adaption and interaction of myoblasts may represent a novel approach for the development of innovative therapeutic targets

    Validation of a novel animal model for sciatic nerve repair with an adipose-derived stem cell loaded fibrin conduit

    Get PDF
    Despite the regenerative capabilities of peripheral nerves, severe injuries or neuronal trauma of critical size impose immense hurdles for proper restoration of neuro-muscular circuitry. Autologous nerve grafts improve re-establishment of connectivity, but also comprise substantial donor site morbidity. We developed a rat model which allows the testing of different cell applications, i.e., mesenchymal stem cells, to improve nerve regeneration in vivo. To mimic inaccurate alignment of autologous nerve grafts with the injured nerve, a 20 mm portion of the sciatic nerve was excised, and sutured back in place in reversed direction. To validate the feasibility of our novel model, a fibrin gel conduit containing autologous undifferentiated adipose-derived stem cells was applied around the coaptation sites and compared to autologous nerve grafts. After evaluating sciatic nerve function for 16 weeks postoperatively, animals were sacrificed, and gastrocnemius muscle weight was determined along with morphological parameters (g-ratio, axon density & diameter) of regenerating axons. Interestingly, the addition of undifferentiated adipose-derived stem cells resulted in a significantly improved re-myelination, axon ingrowth and functional outcome, when compared to animals without a cell seeded conduit. The presented model thus displays several intriguing features: it imitates a certain mismatch in size, distribution and orientation of axons within the nerve coaptation site. The fibrin conduit itself allows for an easy application of cells and, as a true critical-size defect model, any observed improvement relates directly to the performed intervention. Since fibrin and adipose-derived stem cells have been approved for human applications, the technique can theoretically be performed on humans. Thus, we suggest that the model is a powerful tool to investigate cell mediated assistance of peripheral nerve regeneration

    The influence of vitamin D on handgrip strength in elderly trauma patients

    No full text
    Abstract Background and objectives The treatment of elderly patients is an increasing challenge and the long-term sequelae often affect activities of daily living and quality of life in those patients. Handgrip strength (HGS) appears as a promising value to predict the outcome after trauma in elderly patients and to assess the overall muscle strength. Besides the possible role of psychological and hormonal factors, vitamin D may have a positive influence. Furthermore, some data suggest that Vitamin D is beneficial regarding muscle strength and possibly prevents further falls and injuries in orthogeriatric patients. The purpose of this study was to identify if Vitamin D is an influencing factor for HGSin elderly trauma patients. Materials and methods 94 elderly patients in a Level I Trauma Center aged 60 years or older were prospectively enrolled and HGS as well as serum 25-OH Vitamin D concentration (VDC) were measured. In addition, the standardized questionnaires Barthel Index (BI), Parker Mobility Score (PMS), Short Physical Performance Battery (SPPB), Strength, Assistance with walking, Rise from a chair, Climb stairs and Falls (SARC-F) and European Quality of Life 5 Dimensions 5 Levels Questionnaire (EQ-5D-5L), were used to record mental health status and demographic data. Results HGS is mainly related to age and sex in elderly trauma patients. HGS was higher in men (meanmale = 27.31 kg (± 8.11), meanfemale = 15.62 kg (± 5.63), p < 0.001 and decreased with age (βage = − 0.58, p < 0.001). A significant negative correlation between HGS and VDC exists in the overall sample (βVDC = − 0.27, pVDC < 0.008), which still remains after adjusting for age (pVDC < 0.004), but is not significant after adjustment for both main confounders, age and sex (pVDC < 0.08). Furthermore, the HGS was lower in pateints who reported frequent falls, stumbling, dizziness or a late onset of menopause, and decreased if patients felt anxious or depressed during measurements (βanxiety+depression = − 0.26, panxiety+depression < 0.01). Conclusions These results do not support the hypothesis that Vitamin D has a positive influence on muscle strength measured by HGS. Nevertheless, this study could confirm the usefulness of HGS as a tool to detect the risk for frequent falls or stumbling. Furthermore, HGS seems to be associated with dizziness and age at onset of menopause. A significant decrease of HGS could also be shown in patients with anxiety and depression. This underlines the importance of interdisciplinary treatment of elderly trauma patients and needs to be taken into account for further studies, as especially the psychological motivation seems to have a significant influence and is sometimes not considered enough in elderly musculo-skeletal patients

    Dental and Orthopaedic Implant Loosening: Overlap in Gene Expression Regulation

    Get PDF
    Objectives: Endoprosthetic loosening still plays a major role in orthopaedic and dental surgery and includes various cellular immune processes within peri-implant tissues. Although the dental and orthopaedic processes vary in certain parts, the clinical question arises whether there are common immune regulators of implant loosening. Analyzing the key gene expressions common to both processes reveals the mechanisms of osteoclastogenesis within periprosthetic tissues of orthopaedic and dental origin. Methods: Donor peripheral blood mononuclear cells (PBMCs) and intraoperatively obtained periprosthetic fibroblast-like cells (PPFs) were (co-)cultured with [± macrophage-colony stimulating factor (MCSF) and Receptor Activator of NF-κB ligand (RANKL)] in transwell and monolayer culture systems and examined for osteoclastogenic regulations [MCSF, RANKL, osteoprotegerin (OPG), and tumor necrosis factor alpha (TNFα)] as well as the ability of bone resorption. Sequencing analysis compared dental and orthopaedic (co-)cultures. Results: Monolayer co-cultures of both origins expressed high levels of OPG, resulting in inhibition of osteolysis shown by resorption assay on dentin. The high OPG-expression, low RANKL/OPG ratios and a resulting inhibition of osteolysis were displayed by dental and orthopaedic PPFs in monolayer even in the presence of MCSF and RANKL, acting as osteoprotective and immunoregulatory cells. The osteoprotective function was only observed in monolayer cultures of dental and orthopaedic periprosthetic cells and downregulated in the transwell system. In transwell co-cultures of PBMCs/PPFs profound changes of gene expression, with a significant decrease of OPG (20-fold dental versus 100 fold orthopaedic), were identified. Within transwell cultures, which offer more in vivo like conditions, RANKL/OPG ratios displayed similar high levels to the original periprosthetic tissue. For dental and orthopaedic implant loosening, overlapping findings in principal component and heatmap analysis were identified. Conclusions: Thus, periprosthetic osteoclastogenesis may be a correlating immune process in orthopaedic and dental implant failure leading to comparable reactions with regard to osteoclast formation. The transwell cultures system may provide an in vivo like model for the exploration of orthopaedic and dental implant loosening

    Direct Measurements of Fermi Level Pinning at the Surface of Intrinsically n-Type InGaAs Nanowires

    No full text
    Surface effects strongly dominate the intrinsic properties of semiconductor nanowires (NWs), an observation that is commonly attributed to the presence of surface states and their modification of the electronic band structure. Although the effects of the exposed, bare NW surface have been widely studied with respect to charge carrier transport and optical properties, the underlying electronic band structure, Fermi level pinning, and surface band bending profiles are not well explored. Here, we directly and quantitatively assess the Fermi level pinning at the surfaces of composition-tunable, intrinsically n-type InGaAs NWs, as one of the prominent, technologically most relevant NW systems, by using correlated photoluminescence (PL) and X-ray photoemission spectroscopy (XPS). From the PL spectral response, we reveal two dominant radiative recombination pathways, that is, direct near-band edge transitions and red-shifted, spatially indirect transitions induced by surface band bending. The separation of their relative transition energies changes with alloy composition by up to more than ∼40 meV and represent a direct measure for the amount of surface band bending. We further extract quantitatively the Fermi level to surface valence band maximum separation using XPS, and directly verify a composition-dependent transition from downward to upward band bending (surface electron accumulation to depletion) with increasing Ga-content x(Ga) at a crossover near x(Ga) ∼ 0.2. Core level spectra further demonstrate the nature of extrinsic surface states being caused by In-rich suboxides arising from the native oxide layer at the InGaAs NW surface
    corecore