733 research outputs found
Oxidative phosphorylation efficiency, proton conductance and reactive oxygen species production of liver mitochondria correlates with body mass in frogs
ody size is a central biological parameter affecting most biological processes (especially energetics) and mitochondria is a key organelle controlling metabolism and is also the cell's main source of chemical energy. However, the link between body size and mitochondrial function is still unclear, especially in ectotherms. In this study, we investigated several parameters of mitochondrial bioenergetics in the liver of three closely related species of frogs (the common frog Rana temporaria, the marsh frog Pelophylax ridibundus and the bull frog Lithobates catesbeiana). These particular species were chosen due to their differences in adult body mass. We found that the mitochondrial coupling efficiency was markedly increased with animal size, which lead to a higher ATP production (+70%) in the larger frogs (L. catesbeiana) compared to the smaller frogs (R. temporaria). This was essentially driven by a strong negative dependence of mitochondrial proton conductance on body mass. Liver mitochondria from the larger frogs (L. catesbeiana) displayed 50% of the proton conductance of mitochondria from the smaller frogs (R. temporaria). Contrary to our prediction, the low mitochondrial proton conductance measured in L. catesbeiana was not associated with higher radical oxygen species production. Instead, liver mitochondria from the larger individuals produced significantly lower radical oxygen species than those from the smaller frogs. Collectively, the data shows that key bioenergetics parameters of mitochondria (proton leak, ATP production efficiency and radical oxygen species production) are correlated with body mass in frogs. This research expands our understanding of the relationship between mitochondrial function and the evolution of allometric scaling in ectotherms
Inadequate food intake at high temperatures is related to depressed mitochondrial respiratory capacity
Animals, especially ectotherms, are highly sensitive to the temperature of their surrounding environment. Extremely high temperature, for example, induces a decline of average performance of conspecifics within a population, but individual heterogeneity in the ability to cope with elevating temperatures has rarely been studied. In this study, we examined inter-individual variation in feeding ability and consequent growth rate of juvenile brown trout Salmo trutta acclimated to a high temperature (19°C), and investigated the relationship between these metrics of whole-animal performances and among-individual variation in mitochondrial respiration capacity. Food was provided ad libitum yet intake varied ten-fold amongst individuals, resulting in some fish losing weight whilst others continued to grow. Almost half of the variation in food intake was related to variability in mitochondrial capacity: low intake (and hence growth failure) was associated with high leak respiration rates within liver and muscle mitochondria, and a lower coupling of muscle mitochondria. These observations, combined with the inability of fish with low food consumption to increase their intake despite ad libitum food levels, suggest a possible insufficient capacity of the mitochondria for maintaining ATP homeostasis. Individual variation in thermal performance is likely to confer variation in the upper limit of an organism's thermal niche and in turn affect the structure of wild populations in warming environments
Differential effects of food availability on minimum and maximum rates of metabolism
Metabolic rates reflect the energetic cost of living but exhibit remarkable variation among conspecifics, partly as a result of the constraints imposed by environmental conditions. Metabolic rates are sensitive to changes in temperature and oxygen availability, but effects of food availability, particularly on maximum metabolic rates, are not well understood. Here, we show in brown trout (Salmo trutta) that maximum metabolic rates are immutable but minimum metabolic rates increase as a positive function of food availability. As a result, aerobic scope (i.e. the capacity to elevate metabolism above baseline requirements) declines as food availability increases. These differential changes in metabolic rates likely have important consequences for how organisms partition available metabolic power to different functions under the constraints imposed by food availability
Transport Coefficients of the Yukawa One Component Plasma
We present equilibrium molecular-dynamics computations of the thermal
conductivity and the two viscosities of the Yukawa one-component plasma. The
simulations were performed within periodic boundary conditions and Ewald sums
were implemented for the potentials, the forces, and for all the currents which
enter the Kubo formulas. For large values of the screening parameter, our
estimates of the shear viscosity and the thermal conductivity are in good
agreement with the predictions of the Chapman-Enskog theory.Comment: 11 pages, 2 figure
Pattern of Reaction Diffusion Front in Laminar Flows
Autocatalytic reaction between reacted and unreacted species may propagate as
solitary waves, namely at a constant front velocity and with a stationary
concentration profile, resulting from a balance between molecular diffusion and
chemical reaction. The effect of advective flow on the autocatalytic reaction
between iodate and arsenous acid in cylindrical tubes and Hele-Shaw cells is
analyzed experimentally and numerically using lattice BGK simulations. We do
observe the existence of solitary waves with concentration profiles exhibiting
a cusp and we delineate the eikonal and mixing regimes recently predicted.Comment: 4 pages, 3 figures. This paper report on experiments and simulations
in different geometries which test the theory of Boyd Edwards on flow
advection of chemical reaction front which just appears in PRL (PRL Vol
89,104501, sept2002
Organization of Research Activities as a Factor in Increasing the Efficiency of Training International Students in Host Russian Universities
This article summarizes the practices of organizing research activities that can improve the training of international students in Russian universities. The authors analyzed and identified the correlation between the internal costs of research and development (R&D), the equipment in university research laboratories, and the number of foreigners studying at Russian universities. The authors used the methods of analysis and synthesis and a systematic approach to explore the experience of Russian universities in the training of international students. To identify the impact of internal R&D costs and the equipment of university research laboratories on the number of foreigners studying in Russian universities, the authors applied correlation and regression analysis, which included building a regression equation, calculating the correlation coefficient, the t-test, the coefficient of elasticity, and the coefficient of determination. This research paper revealed a strong correlation between the number of international students in the Russian Federation on the internal R&D costs and the cost of fixed assets and the equipment of Russian universities, which was proven by the calculated correlation coefficients, elasticity coefficients, and determination coefficients. The authors concluded that universities could influence the number of international students. This article proposes some methods for organizing the research activities of international students that increase their academic mobility and form the most relevant scientific and professional competencies. Higher educational institutions of any major can implement these recommendations for managing the research activities of international students. The novelty of this study lies in the fact that the authors performed the correlation and regression analysis and revealed the dependence of the number of international students in the Russian Federation on internal R&D costs, the cost of fixed assets, and the equipment of Russian universities. The authors illustrated the analysis results with the trend predictive values of factorial features and the value of the effective feature estimated according to the regression equations built. Using the calculated MAPE and Forecast Accuracy indicators for these predicted values, the authors concluded that the level of factorial features and the effective feature were predicted with high accuracy. Thus, host Russian universities can increase the number of international students through effective organization of research activities
The optimal combination of standard metabolic rate and aerobic scope for somatic growth depends on food availability
Metabolic rates can vary as much as threefold among individuals of the same size and age in a population, but why such variation persists is unclear given that they determine the energetic cost of living. Relationships between standard metabolic rate (SMR), growth and survival can vary with environmental conditions, suggesting that the fitness consequences of a given metabolic phenotype may be context-dependent. Less attention has focused on the link between absolute aerobic scope (AS, the difference between standard and maximum metabolic rate) and fitness under different environmental conditions, despite the importance of aerobic scope to an organism's total energetic capacity.<p></p>
We examined the links between individual variation in both SMR and AS and somatic growth rates of brown trout (Salmo trutta) under different levels of food availability.<p></p>
Standard metabolic rate and AS were uncorrelated across individuals. However, SMR and AS not only had interactive effects on growth, but these interactions depended on food level: at ad libitum food levels, AS had a positive effect on growth whose magnitude depended on SMR; at intermediate food levels, AS and SMR had interactive effects on growth, but at the low food level, there was no effect of either AS or SMR on growth. As a result, there was no metabolic phenotype that performed best or worst across all food levels.<p></p>
These results demonstrate the importance of aerobic scope in explaining somatic growth rates and support the hypothesis that links between individual variation in metabolism and fitness are context-dependent.<p></p>
The larger metabolic phenotype and the environmental context in which performance is evaluated both need to be considered in order to better understand the link between metabolic rates and fitness and thereby the persistence of individual variation in metabolic rates.<p></p>
- …