5 research outputs found

    Association between metformin use and below-the-knee arterial calcification score in type 2 diabetic patients.

    Get PDF
    BACKGROUND Vascular calcification (VC) is common in type 2 diabetes, and is associated with cardiovascular complications. Recent preclinical data suggest that metformin inhibits VC both in vitro and in animal models. However, metformin's effects in patients with diabetic VC have not previously been characterized. The present study investigated the association between metformin use and lower-limb arterial calcification in patients with type 2 diabetes and high cardiovascular risk. METHODS The DIACART cross-sectional cohort study included 198 patients with type 2 diabetes but without severe chronic kidney disease. Below-the-knee calcification scores were assessed by computed tomography and supplemented by colour duplex ultrasonography. Data on anti-diabetic drugs were carefully collected from the patients' medical records and during patient interviews. Biochemical and clinical data were studied as potential confounding factors. RESULTS Metformin-treated patients had a significantly lower calcification score than metformin-free patients (mean ± standard deviation: 2033 ± 4514 and 4684 ± 9291, respectively; p = 0.01). A univariate analysis showed that metformin was associated with a significantly lower prevalence of severe below-the-knee arterial calcification (p = 0.02). VC was not significantly associated with the use of other antidiabetic drugs, including sulfonylureas, insulin, gliptin, and glucagon like peptide-1 analogues. A multivariate logistic regression analysis indicated that the association between metformin use and calcification score (odds ratio [95% confidence interval] = 0.33 [0.11-0.98]; p = 0.045) was independent of age, gender, tobacco use, renal function, previous cardiovascular disease, diabetes duration, neuropathy, retinopathy, HbA1c levels, and inflammation. CONCLUSIONS In patients with type 2 diabetes, metformin use was independently associated with a lower below-the-knee arterial calcification score. This association may contribute to metformin's well-known vascular protective effect. Further prospective investigations of metformin's potential ability to inhibit VC in patients with and without type 2 diabetes are now needed to confirm these results

    Blood Flow and Shear Stress Allow Monitoring of Progression and Prognosis of Tumor Diseases

    No full text
    International audienceIn the presence of tumor angiogenesis, blood flow must increase, leading to an elevation of blood flow velocities (BFVels) and wall shear stress (WSS) in upstream native arteries. An adaptive arterial remodeling is stimulated, whose purpose lies in the enlargement of the arterial inner diameter, aiming for normalization of BFVels and WSS. Remodeling engages delayed processes that are efficient only several weeks/months after initiation, independent from those governing expansion of the neovascular network. Therefore, during tumor expansion, there is a time interval during which elevation of BFVels and WSS could reflect disease progression. Conversely, during the period of stability, BFVels and WSS drop back to normal values due to the achievement of remodeling processes. Ovarian peritoneal carcinomatosis (OPC), pseudomyxoma peritonei (PMP), and superficial arteriovenous malformations (AVMs) are diseases characterized by the development of abnormal vascular networks developed on native ones. In OPC and PMP, preoperative blood flow in the superior mesenteric artery (SMA) correlated with the per-operative peritoneal carcinomatosis index (OPC: n = 21, R = 0.79, p < 0.0001, PMP: n = 66, R = 0.63, p < 0.0001). Moreover, 1 year after surgery, WSS in the SMA helped in distinguishing patients with PMP from those without disease progression [ROC-curve analysis, AUC = 0.978 (0.902–0.999), p < 0.0001, sensitivity: 100.0%, specificity: 93.5%, cutoff: 12.1 dynes/cm 2 ]. Similarly, WSS in the ipsilateral afferent arteries close to the lesion distinguished stable from progressive AVM [ROC-curve analysis, AUC: 0.988, (0.919–1.000), p < 0.0001, sensitivity: 93.5%, specificity: 95.7%; cutoff: 26.5 dynes/cm 2 ]. Blood flow volume is indicative of the tumor burden in OPC and PMP, and WSS represents an early sensitive and specific vascular marker of disease progression in PMP and AVM

    Serum concentration and vascular expression of adiponectin are differentially associated with the diabetic calcifying peripheral arteriopathy

    No full text
    International audienceBackground: Medial calcification in diabetes contributes to the arterial occlusive process occurring below the knee level. Adiponectin is an adipokine with atheroprotective properties and possible protective role against arterial calcification. The aim of the study was to investigate, in type 2 diabetes, the link between vascular expression and serum concentration of adiponectin and (1) peripheral arterial calcification and (2) lower limb occlusive arterial disease.Methods: Scoring of peripheral vascular calcification and peripheral arterial occlusive disease, using CT-scan and color-duplex ultrasonography respectively, were conducted and explored in relation to serum adiponectin level in a cross sectional study of 197 patients with type 2 diabetes. Vascular adiponectin expression in the arterial wall of diabetic patients with and without medial calcification was evaluated by immunohistochemistry.Results: Peripheral arterial calcification score was higher in patients with the highest adiponectin concentration. In a multivariate logistic regression analysis, an increase of 1 µg/mL of adiponectin was associated with a 22% increase of arterial calcification (adjusted OR = 1.22; 95% CI 1.03–1.44; p = 0.02). Arterial occlusive score was also higher in patients with adiponectin concentration > median (2.8 ± 4.8 vs 4.2 ± 5.7, p = 0.034). Immunohistochemical analyses showed a strong and specific staining of adiponectin in smooth muscle cells in calcified arteries, with a more pronounced expression of adiponectin in early stages of medial calcification.Conclusions: Peripheral arterial calcification is positively associated with circulating adiponectin levels in patients with type 2 diabetes, but vascular adiponectin expression is already observed at early stages of calcification. Adiponectin secretion could be a compensatory mechanism against the calcification process

    Circulating Receptor Activator of Nuclear Factor kB Ligand and triglycerides are associated with progression of lower limb arterial calcification in type 2 diabetes: a prospective, observational cohort study

    No full text
    Background Lower limb arterial calcification is a frequent, underestimated but serious complication of diabetes. The DIACART study is a prospective cohort study designed to evaluate the determinants of the progression of lower limb arterial calcification in 198 patients with type 2 diabetes. Methods Lower limb arterial calcification scores were determined by computed tomography at baseline and after a mean follow up of 31.20 +/- 3.86 months. Serum RANKL (Receptor Activator of Nuclear factor kB Ligand) and bone remodeling, inflammatory and metabolic parameters were measured at baseline. The predictive effect of these markers on calcification progression was analyzed by a multivariate linear regression model. Results At baseline, mean +/- SD and median lower limb arterial calcification scores were, 2364 +/- 5613 and 527 respectively and at the end of the study, 3739 +/- 6886 and 1355 respectively. Using multivariate analysis, the progression of lower limb arterial log calcification score was found to be associated with (beta coefficient [slope], 95% CI, p-value) baseline log(calcification score) (1.02, 1.00-1.04, p <0.001), triglycerides (0.11, 0.03-0.20, p = 0.007), log(RANKL) (0.07, 0.02-0.11, p = 0.016), previous ischemic cardiomyopathy (0.36, 0.15-0.57, p = 0.001), statin use (0.39, 0.06-0.72, p = 0.023) and duration of follow up (0.04, 0.01-0.06, p = 0.004). Conclusion In patients with type 2 diabetes, lower limb arterial calcification is frequent and can progress rapidly. Circulating RANKL and triglycerides are independently associated with this progression. These results open new therapeutic perspectives in peripheral diabetic calcifying arteriopathy. Trial registrationNCT0243123
    corecore