12 research outputs found

    Tuba8 Drives Differentiation of Cortical Radial Glia into Apical Intermediate Progenitors by Tuning Modifications of Tubulin C Termini

    Get PDF
    Most adult neurons and glia originate from radial glial progenitors (RGs), a type of stem cell typically extending from the apical to the basal side of the developing cortex. Precise regulation of the choice between RG self-renewal and differentiation is critical for normal development, but the mechanisms underlying this transition remain elusive. We show that the non-canonical tubulin Tuba8, transiently expressed in cortical progenitors, drives differentiation of RGs into apical intermediate progenitors, a more restricted progenitor type lacking attachment to the basal lamina. This effect depends on the unique C-terminal sequence of Tuba8 that antagonizes tubulin tyrosination and Δ2 cleavage, two post-translational modifications (PTMs) essential for RG fiber maintenance and the switch between direct and indirect neurogenesis and ultimately distinct neuronal lineage outcomes. Our work uncovers an instructive role of a developmentally regulated tubulin isotype in progenitor differentiation and provides new insights into biological functions of the cellular tubulin PTM “code.” Radial glial progenitors of the developing mouse cortex differentiate into a more restricted progenitor type, apical intermediate progenitors. Ramos et al. find that Tuba8 drives this differentiation by tuning tyrosination and Δ2 cleavage, post-translational modifications of tubulin C termini, highlighting the functional significance of the “tubulin code” in cortical progenitor differentiation.Fil: Ramos, Susana I.. King's College London; Reino UnidoFil: Makeyev, Eugene V.. King's College London; Reino UnidoFil: Salierno, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Kodama, Takashi. University Johns Hopkins; Estados UnidosFil: Kawakami, Yasuhiko. University Johns Hopkins; Estados UnidosFil: Sahara, Setsuko. King's College London; Reino Unid

    Synchronized cell attachment triggered by photo-activatable adhesive ligands allows QCM-based detection of early integrin binding

    Get PDF
    The Quartz Crystal Microbalance with dissipation (QCM-D) technique was applied to monitor and quantify integrin-RGD recognition during the early stages of cell adhesion. Using QCM-D crystals modified with a photo-activatable RGD peptide, the time point of presentation of adhesive ligand at the surface of the QCM-D crystal could be accurately controlled. This allowed temporal resolution of early integrin-RGD binding and the subsequent cell spreading process, and their separate detection by QCM-D. The specificity of the integrin-RGD binding event was corroborated by performing the experiments in the presence of soluble cyclicRGD as a competitor, and cytochalasin D as inhibitor of cell spreading. Larger frequency change in the QCM-D signal was observed for cells with larger spread area, and for cells overexpressing integrin avb3 upon stable transfection. This strategy enables quantification of integrin activity which, in turn, may allow discrimination among different cell types displaying distinct integrin subtypes and expression levels thereof. On the basis of these findings, we believe the strategy can be extended to other photoactivatable ligands to characterize cell membrane receptors activity, a relevant issue for cancer diagnosis (and prognosis) as other several pathologies.Fil: Iturri, Jagoba. Max Planck Institute for Polymer Research; AlemaniaFil: García Fernández, Luis. Max Planck Institute for Polymer Research; AlemaniaFil: Reuning, Ute. Technische Universitat Munchen; AlemaniaFil: García, Andrés J.. Georgia Institute Of Techology; Estados UnidosFil: del Campo, Aránzazu. Max Planck Institute for Polymer Research; AlemaniaFil: Salierno, Marcelo Javier. Max Planck Institute for Polymer Research; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Exploring the response of Marchantia polymorpha: Growth, morphology and chlorophyll content in the presence of anthracene

    Get PDF
    Polycyclic aromatic hydrocarbons (PAHs) were identified as hazardous contaminants that are ubiquitous and persistent in aquatic environments, where bryophytes sensu lato (mosses, liverworts and hornworts) are frequently present. Marchantia polymorpha (Class Hepaticae; thalloid liverwort) is known to respond fast to changes in the environment; it accumulates toxic substances in its tissues due to the lack of vascular and radicular systems and a reduced or absent cuticle. The objective of the present study was to quantify the effects of increasing concentrations of anthracene (0, 50 100, 280 μM) on the germination of propagules, plant morphology and chlorophyll content index (CCI) in M. polymorpha under in vitro cultures. The results show that anthracene had no statistical effect on germination or propagula formation. However, plants exposed to anthracene for 30 days showed significantly lowered the content of chlorophyll (measured as CCI), irregular growth patterns and the induction of thalli asexual reproduction as evidenced by the production of multicellular viable propagules in gemmae cups. Results of epifluorescence microscopy also showed concomitant accumulation of anthracene in the cell walls. All of these distinctive morphological and physiological adaptive responses indicators, clearly suggest that M. polymorpha are capable of resisting high (coal tar) anthracene concentrations.Fil: Spinedi, Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Rojas, Nadia Gimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Storb Guzman, Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Cabrera, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Aranda, Elisabet. Universidad de Granada; EspañaFil: Salierno, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Svriz, Maya. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Río Negro; ArgentinaFil: Scervino, Jose Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentin

    Heme oxygenase-1 in the forefront of a multi-molecular network that governs cell–cell contacts and filopodia-induced zippering in prostate cancer

    Get PDF
    Prostate cancer (PCa) cells display abnormal expression of cytoskeletal proteins resulting in an augmented capacity to resist chemotherapy and colonize distant organs. We have previously shown that heme oxygenase 1 (HO-1) is implicated in cell morphology regulation in PCa. Here, through a multi 'omics' approach we define the HO-1 interactome in PCa, identifying HO-1 molecular partners associated with the integrity of the cellular cytoskeleton. The bioinformatics screening for these cytoskeletal-related partners reveal that they are highly misregulated in prostate adenocarcinoma compared with normal prostate tissue. Under HO-1 induction, PCa cells present reduced frequency in migration events, trajectory and cell velocity and, a significant higher proportion of filopodia-like protrusions favoring zippering among neighboring cells. Moreover forced expression of HO-1 was also capable of altering cell protrusions in transwell co-culture systems of PCa cells with MC3T3 cells (pre-osteoblastic cell line). Accordingly, these effects were reversed under siHO. Transcriptomics profiling evidenced significant modulation of key markers related to cell adhesion and cell–cell communication under HO-1 induction. The integration from our omics-based research provides a four molecular pathway foundation (ANXA2/HMGA1/POU3F1; NFRSF13/GSN; TMOD3/RAI14/VWF; and PLAT/PLAU) behind HO-1 regulation of tumor cytoskeletal cell compartments. The complementary proteomics and transcriptomics approaches presented here promise to move us closer to unravel the molecular framework underpinning HO-1 involvement in the modulation of cytoskeleton pathways, pushing toward a less aggressive phenotype in PCa

    A caged nicotine with nanosecond range kinetics and visible light sensitivity

    Get PDF
    We report the synthesis, characterization and applications of a ruthenium-bipyridine based caged nicotine. The complex [Ru(bpy)2(nic)2]2+ (where bpy=2,2' bipyridine and nic=nicotine (3-[(2S)-1-methylpyrrolidin-2-yl] pyridine)) releases nicotine with a quantum yield Φ=0.23 upon irradiation with biologically harmless, blue (473nm) or green (532nm) light. The photolysis reaction is clean and very fast, with a time constant of 17ns. The synthesis is simple and the obtained compound is characterized by NMR, UV-Vis spectroscopy and cyclic voltametry. We find that this compound is active in biological systems, being able to elicit action potentials in leech neurons. © 2010 Elsevier Inc.Fil: Filevich, Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: Salierno, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: Etchenique, Roberto Argentino. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentin

    Guiding cell migration with microscale stiffness patterns and undulated surfaces

    No full text
    By placing stiff structures under soft materials, prior studies have demonstrated that cells sense and prefer to position themselves over the stiff structures. However, an understanding of how cells migrate on such surfaces has not been established. Many studies have also shown that cells readily align to surface topography. Here we investigate the influence of these two aspects in directing cell migration on surfaces with 5 and 10 μm line stiffness patterns (a cellular to subcellular length scale). A simple approach to create flat, stiffness-patterned surfaces by suspending a thin, low modulus polydimethylsiloxane (PDMS) film over a high modulus PDMS structure is presented, as well as a route to add undulations. We confirm that cells are able to sense through the thin film by observation of focal adhesions being positioned on stiff regions. We examine migration by introducing migration efficiency, a quantitative parameter to determine how strongly cells migrate in a certain direction. We found that cells have a preference to align and migrate along stiffness patterns while the addition of undulations boosts this effect, significantly increasing migration efficiency in either case. Interestingly, we found speed to play little role in the migration efficiency and to be mainly influenced by the top layer modulus. Our results demonstrate that both stiffness patterns and surface undulations are important considerations when investigating the interactions of cells with biomaterial surfaces. Statement of Significance Two common physical considerations for cell-surface interactions include patterned stiffness and patterned topography. However, their relative influences on cell migration behavior have not been established, particularly on cellular to subcellular scale patterns. For stiffness patterning, it has been recently shown that cells tend to position themselves over a stiff structure that is placed under a thin soft layer. By quantifying the directional migration efficiency on such surfaces with and without undulations, we show that migration can be manipulated by flat stiffness patterns, although surface undulations also play a strong role. Our results offer insight on the effect of cellular scale stiffness and topographical patterns on cell migration, which is critical for the development of fundamental cell studies and engineered implants.Fil: Pham, Jonathan T.. Max Planck Institute for Polymer Research; AlemaniaFil: Xue, Longjian. Max Planck Institute for Polymer Research; AlemaniaFil: del Campo, Aránzazu. Leibniz Institute for New Materials; Alemania. Universitat Saarland; AlemaniaFil: Salierno, Marcelo Javier. Max Planck Institute for Polymer Research; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentin

    Photoactivatable Adhesive Ligands for Light-Guided Neuronal Growth

    No full text
    Neuro-regeneration after trauma requires growth and reconnection of neurons to reestablish information flow in particular directions across the damaged tissue. To support this process, biomaterials for nerve tissue regeneration need to provide spatial information to adhesion receptors on the cell membrane and to provide directionality to growing neurites. Here, photoactivatable adhesive peptides based on the CASIKVAVSADR laminin peptidomimetic are presented and applied to spatiotemporal control of neuronal growth to biomaterials in vitro. The introduction of a photoremovable group [6-nitroveratryl (NVOC), 3-(4,5-dimethoxy-2-nitrophenyl)butan-2-yl (DMNPB), or 2,2′-((3′-(1-hydroxypropan-2-yl)-4′-nitro-[1,1′-biphenyl]-4-yl)azanediyl)bis(ethan-1-ol) (HANBP)] at the amino terminal group of the K residue temporally inhibited the activity of the peptide. The bioactivity was regained through controlled light exposure. When used in neuronal culture substrates, the peptides allowed light-based control of the attachment and differentiation of neuronal cells. Site-selective irradiation activated adhesion and differentiation cues and guided seeded neurons to grow in predefined patterns. This is the first demonstration of ligand-based light-controlled interaction between neuronal cells and biomaterials.Fil: Farrukh, Aleeza. Leibniz Institute for New Materials; Alemania. Max Planck Graduate Center; AlemaniaFil: Fan, Wenqiang. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Zhao, Shifang. Universitat Saarland; Alemania. Leibniz Institute for New Materials; AlemaniaFil: Salierno, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Paez, Julieta Irene. Leibniz Institute for New Materials; AlemaniaFil: del Campo, Aránzazu. Universitat Saarland; Alemania. Leibniz Institute for New Materials; Alemani

    Microenvironments to study migration and somal translocation in cortical neurons

    No full text
    Migrating post-mitotic neurons of the developing cerebral cortex undergo terminal somal translocation (ST) when they reach their final destination in the cortical plate. This process is crucial for proper cortical layering and its perturbation can lead to brain dysfunction. Here we present a reductionist biomaterials platform that faithfully supports and controls the distinct phases of terminal ST in vitro. We developed microenvironments with different adhesive molecules to support neuronal attachment, neurite extension, and migration in distinct manners. Efficient ST occurred when the leading process of migratory neurons crossed from low-to high-adhesive areas on a substrate, promoting spreading of the leading growth cone. Our results indicate that elementary adhesive cell-substrate interactions strongly influence migratory behavior and the final positioning of neurons during their developmental journey. This in vitro model allows advanced experimentation to reveal the microenvironmental requirements underlying cortical layer development and disorders.Fil: Zhao, Shifang. Leibniz Institute for New Materials; Alemania. Max Planck Institute für Polymerforschung; Alemania. Universitat Saarland; AlemaniaFil: Fan, Wenqiang. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Guo, Xiang. Leibniz Institute for New Materials; AlemaniaFil: Xue, Longjian. Max Planck Institute für Polymerforschung; AlemaniaFil: Berninger, Benedikt. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Salierno, Marcelo Javier. Max Planck Institute für Polymerforschung; Alemania. Johannes Gutenberg Universitat Mainz; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: del Campo, Aránzazu. Max Planck Institute für Polymerforschung; Alemania. Universitat Saarland; Alemania. Leibniz Institute for New Materials; Alemani

    In Situ, Light-Guided Axon Growth on Biomaterials via Photoactivatable Laminin Peptidomimetic IK(HANBP)VAV

    No full text
    The ability to guide the growth of neurites is relevant for reconstructing neural networks and for nerve tissue regeneration. Here, a biofunctional hydrogel that allows light-based directional control of axon growth in situ is presented. The gel is covalently modified with a photoactivatable derivative of the short laminin peptidomimetic IKVAV. This adhesive peptide contains the photoremovable group 2-(4′-amino-4-nitro-[1,1′-biphenyl]-3-yl)propan-1-ol (HANBP) on the Lys rest that inhibits its activity. The modified peptide is highly soluble in water and can be simply conjugated to -COOH containing hydrogels via its terminal -NH 2 group. Light exposure allows presentation of the IKVAV adhesive motif on a soft hydrogel at desired concentration and at defined position and time point. The photoactivated gel supports neurite outgrowth in embryonic neural progenitor cells culture and allows site-selective guidance of neurites extension. In situ exposure of cell cultures using a scanning laser allows outgrowth of neurites in desired pathways.Fil: Farrukh, Aleeza. Leibniz Institute for New Materials; Alemania. Max Planck Graduate Center; AlemaniaFil: Zhao, Shifang. Universitat Saarland; Alemania. Leibniz Institute for New Materials; AlemaniaFil: Paez, Julieta Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Leibniz Institute for New Materials; AlemaniaFil: Kavyanifar, Atria. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Salierno, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Universidad de Buenos Aires; Argentina. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Cavalié, Adolfo. Universitat Saarland; AlemaniaFil: del Campo, Aránzazu. Universitat Saarland; Alemania. Leibniz Institute for New Materials; Alemani

    Phototriggered fibril-like environments arbitrate cell escapes and migration from endothelial monolayers

    Get PDF
    Cell detachment and migration from the endothelium occurs during vasculogenesis and also in pathological states. Here, we use a novel approach to trigger single cell release from an endothelial monolayer by in-situ opening of adhesive, fibril-like environment using light-responsive ligands and scanning lasers. Cell escapes from the monolayer were observed on the fibril-like adhesive tracks with 3-15 μm width. The frequency of endothelial cell escapes increased monotonically with the fibril width and with the density of the light-activated adhesive ligand. Interestingly, treatment with VEGF induced cohesiveness within the cell layer, preventing cell leaks. When migrating through the tracks, cells presented body lateral reduction and nuclear deformation imposed by the line width and dependent on myosin contractility. Cell migration mode changed from mesenchymal to amoeboid-like when the adhesive tracks narrowed (≤5 μm). Moreover, cell nucleus was shrunk showing packed DNA on lines narrower than the nuclear dimensions in a mechanisms intimately associated with the stress fibers. This platform allows the detailed study of escapes and migratory transitions of cohesive cells, which are relevant processes in development and during diseases such as organ fibrosis and carcinomas.Fil: Salierno, Marcelo Javier. Institut Max Planck For Polymerforschung,; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: García Fernández, Lui. Institut Max Planck For Polymerforschung,; AlemaniaFil: Carabelos, Noelia. Institut Max Planck For Polymerforschung,; Alemania. Universidad de Buenos Aires; ArgentinaFil: Kiefer, Karin. Leibniz-institut Fur Neue Materialien GMBH; AlemaniaFil: García, Andrés J.. Georgia Institute Of Techology; Estados Unidos. Instituto Tecnológico de Georgia; Estados UnidosFil: Campo, Aránzazu del. Institut Max Planck For Polymerforschung,; Alemania. Leibniz-institut Fur Neue Materialien GMBH; Alemania. Universitat Saarland; Alemani
    corecore