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Abstract 

 Polycyclic aromatic hydrocarbons (PAHs) were identified as hazardous 

contaminants that are ubiquitous and persistent in aquatic environments, where 

bryophytes sensu lato (mosses, liverworts and hornworts) are frequently present. 

Marchantia polymorpha (Class Hepaticae; thalloid liverwort) is known to respond fast to 

changes in the environment; it accumulates toxic substances in its tissues due to the lack 

of vascular and radicular systems and a reduced or absent cuticle. The objective of the 

present study was to quantify the effects of increasing concentrations of anthracene (0, 50 

100, 280 µM) on the germination of propagules, plant morphology and chlorophyll content 

index (CCI) in M. polymorpha under in vitro cultures. The results show that anthracene had 

no statistical effect on germination or propagula formation. However, plants exposed to 

anthracene for 30 days showed significantly lowered the content of chlorophyll (measured 

as CCI), irregular growth patterns and the induction of thalli asexual reproduction as 

evidenced by the production of multicellular viable propagules in gemmae cups. Results of 

epifluorescence microscopy also showed concomitant accumulation of anthracene in the 

cell walls. All of these distinctive morphological and physiological adaptive responses 

indicators, clearly suggest that M. polymorpha are capable of resisting high (coal tar) 

anthracene concentrations. 

 
 
Keywords: anthracene; bioindicator; bioaccumulation; Bryophytes; liverwort; phytotoxicity 
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Introduction 

 Persistent organic pollutants (POPs) are recalcitrant chemical compounds. They 

are known to bioaccumulate, they are highly toxic and can be transported far from the 

contamination source. Some examples of POPs are polychlorinated byphenyls, pesticides 

and polycyclic aromatic hydrocarbons (PAHs) (Augusto et al., 2013). The latter are 

ubiquitous by-products that result from the combustion of organic matter from natural and 

anthropogenic sources, particularly fossil fuels (Spagnuolo et al., 2016). The PAHs can 

reach the aquatic ecosystems through different pathways, such as the atmosphere 

(smog), accidental crude oil and refined fuel spills and untreated industrial and domestic 

effluents (Neff, 1985). PAHs are extremely toxic to mammals, inducing 

immunosuppression and genotoxicity, among other effects (Haritash and Kaushik, 2009). 

In the environment, anthracene concentration can range from 0.002 ppm to 0.07 ppm, on 

unpolluted and aged-PAH polluted soils, respectively, or 100 ppm on coal tar (Wise et al., 

1998; Nadal et al., 2004; García-Sánchez et al., 2018). The concentrations compatible 

with aquatic life are very low, as determined by guidelines from the United States 

Environmental Protection Agency (USEPA) (8.3 ppm, Maximum Contaminant Level (MCL) 

– highest level of a contaminant that is allowed in drinking water). In soils, this level is 

limited to 17 ppm: limit in ppm for individual PAHs established by the Regional Screening 

Levels (RSL) for Chemical Contaminants at Superfund Sites (USEPA 2009). 

 In plants, PAHs are often toxic if the compound is not appropriately immobilised in 

the cell wall (Harvey et al., 2002). Uptake of non-polar organic contaminants can be due to 

penetration of the plasmalemma by simple diffusion due to their lipophilic character (Pilon-

Smits, 2005) or it can be mediated by an ABC membrane protein (Cobbett and Meagher, 

2002). Once inside plant, PAHs can move across the cell tissues via apoplastic and 

symplastic pathways (Zhan et al., 2018). 
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 The effect of pollutants, such as anthracene, in vascular plants has been widely 

studied. For example, anthracene can be solubilised in the thylakoid membranes and can 

cause conformational changes, resulting in alterations to the electron flux, reductions to 

the pool of co-enzymes, and reductions to the biomass. Moreover, much research has 

been published about aberrant growth patterns or reactive oxygen species (ROS)-induced 

responses (Aksmann and Tukaj, 2004; Liu et al., 2009; Tomar and Jajoo, 2013). 

 On the contrary, the effect of anthracene on non-vascular plants is not extensively 

documented. Studies were found on the ability of Brachythecium rutabulum and 

Hylocomium splendens to accumulate phenanthrene and other hydrocarbons in urban 

areas (Bustamante et al., 2015; Foan et al., 2015) although research on the topic is 

scarce. 

Phylum Bryophyta (sensu lato) includes three classes—Anthocerotae, Hepaticae 

and Musci—with approximately 15,000 species (Chandra et al., 2017). Marchantia 

polymorpha (Marchantiopsida) is a species from the second class. It is considered to be 

tolerant to adverse environmental conditions, and it frequently colonises contaminated 

soils and wetlands, thus making it a peri-urban species (Shaw and Goffinet, 2000; Alam 

and Sharma, 2012). Asexual propagule formation during the gametophytic phase is a 

widely known characteristic of bryophytes; it is displayed by almost 46% of the described 

liveworth flora (Longton, 1992; Laaka-Lindberg et al., 2000). In addition, M. polymorpha 

undergoes sexual reproduction, which makes niche colonisation easier and may constitute 

a first and fast response to unfavourable conditions in the environment (Steere, 1970; 

Ponce de León and Montesano, 2017). 

 Moreover, bryophytes react faster to changes in the environment as a 

consequence of the lack of a radicular and vascular system; water, nutrients and pollutants 

are in direct contact with cells, which means tolerance and plasticity are required 

characteristics for acclimation to different stressors (Bates, 1992). Bryophytes are known 
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to accumulate pollutants, for example, heavy metals, dioxins, PAHs and emerging 

contaminants, such as antibiotics or painkillers (Roy and Hänninen, 1995; Carginale et al., 

2004; Delépée et al., 2004; Krommer et al., 2007). 

 The objective of the present study was to investigate the physiological effects of 

different concentration of anthracene on M. polymorpha by measuring plant survival, 

growth rate and pigment content. In addition, the capability of M. polymorpha to 

accumulate the contaminant was also investigated. To do that, the system was forced 

using extremely high concentration that is only found in coal tar, in order to predict the 

possible use of these plants in phytoremediation and/or phytoextraction. 
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Materials and methods 

Sampling 

 M. polymorpha specimens for the present work were collected from water channels 

located in the El Mallín area (San Carlos de Bariloche, Patagonia, Argentina; 41° 08' 32.0" 

S, 71° 18' 36.7"W). This site was altered by anthropogenic activities. Specimens 

established in wet soil under constant shade were selected, collected and deposited in 

polyethylene bags; transported at ambient temperature to the laboratory and stored at 4°C. 

These samples without any previous treatment were used in the following tests. 

Morphological characteristics were used for the identification of the collected specimens 

(Shaw and Goffinet, 2000). 

 

Sterilisation and planting of propagules 

The propagules from gemmae cups of M. polymorpha without any previous 

treatment were collected under a binocular stereo dissecting microscope and placed on a 

piece of filter paper moistened with water. The soil particles that were adhered to the 

propagules were removed by moving them onto the filter paper. The method described by 

Silvani et al. (2012) for sterilisation of hepatic thallus was used. They were placed into 

glass Petri plates containing minimum medium (Becard and Fortin, 1988) that either was 

or was not supplemented with the contaminant to reach 100 propagules per treatment. 

Anthracene was added according to the methodology described by Aranda et al. (2013), 

preparing a stock solution diluted in acetone (5 mM). PAH-enriched culture medium was 

prepared adding the stock solution to the culture medium immediately after autoclaving, to 

reach the final concentrations of 0, 50, 100, 280 and 560 µM. The medium was then stirred 

for 15 min under sterile conditions in order to evaporate the acetone and avoid the toxic 

effects of the solvent. The used experimental protocol is well established (Alves et al., 
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2017; Aranda et al., 2013), although formation of crystals cannot be fully excluded. M 

medium without PAHs as well as M medium containing only acetone (PAH-free) were 

used as controls. All the samples were washed before each measurement. Four replicates 

were used for each treatment concentration. The propagules that presented rhizoids were 

considered to be germinated. After three days, the percentage of total germinations was 

quantified. 

 

Plant growth  

 Four of the germinated propagules were transferred individually into flask-shaped 

glass pots (50 mL) with minimal medium (control) and with the different concentrations of 

anthracene, which were previously described, and the development of the plants was 

monitored. The bases of the flask-shaped glass pots were covered with aluminum foil to 

avoid the direct incidence of light and prevent the light UV-oxidation of anthracene.  The 

four replicates per treatment were placed in a chamber under controlled light (16/8 h 

light/dark) and temperature (25°C) conditions. Light at 45–60 µM photons m-2 s-2 was 

supplied by cool white fluorescent tubes. After 30 days of cultivation, plants were 

harvested, and quantitative and qualitative measurements (thalo morphology) were made. 

Plant morphology was analysed under binocular microscope (Leica wild M3Z). Plant 

biomass was determined after oven-drying the samples at 80°C until a constant weight 

was reached.  

 

Fluorescence microscopy and image analysis  

 Plants material (0.5 cm2 in size of actively growing leaf) for visualization was 

carefully rinsed to remove the remainder growing media and any crystal of the 

contaminant that could has remained on the surface of the sample. The presence of 
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anthracene was examined by fluorescence microscopy as describe Aranda et al., 2013, 

with an Olympus BX51 epifluorescence microscope (Olympus Optical Co., Tokyo, Japan). 

Wavelengths were chosen based on the excitation and emission spectra of anthracene 

(Byron and Werner, 1991). Upon excitation at 365/10 nm, the presence of anthracene was 

measured at an emission of 420 nm by using a DAPI based cube filter U-MNU2 from 

Olympus. The TIFF 12-bit images were captured using a LEICA DFC-425 C CCD camera 

and were analysed using FIJI software (National Institutes of Health ImageJ platform). 

RAW images were decomposed in three channels (blue, Green, red) and we use the 

intensity in the blue channel to compare it with the control and other treatments. We 

directly compare the average measures of each treatment against the control and against 

different anthracene concentration scenarios in the blue channel of the TIFF format. We 

took 20 random circular areas of 100 pixels diameter in which we allocate the cellular wall 

at the centre of the spot the resulting average histogram in the blue range was compared 

between conditions. Data were expressed as relative fluorescent intensity. 

 

Chlorophyll Content Index (CCI) 

 Clorofilio device (Cavadevices®, Buenos Aires, Argentina) was used to calculate 

the relative chlorophyll content. It has a measurement area of 0.6 cm2, and it is calculated 

using an index value of the chlorophyll content (CCI), giving a ratio of optical absorbance 

at 655 nm and 940 nm. One sample consisted of a leaf apex of 0.6 cm2. Measurements 

were taken for each replicate of each treatment following the methodology proposed by 

Ling et al. (2011). 

 

Statistical analysis 
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 Data were analysed by one-way analysis of variance (ANOVA) using Statistica 7.0 

software. Normality and homoscedasticity assumptions were tested, and Tukey’s honestly 

significant difference test (HSD) was used to validate the differences found using ANOVA. 

 

Results and discussion 

Propagula germination 

 The rate of germination of asexual propagules did not depend on the concentration 

of anthracene, with similar rates at all of the tested concentrations, including the highest 

concentration (560 µM; Data not shown). In contrast, the increase in the concentration of 

heavy metals decreases the germination of propagules of M polymorpha and turns out to 

be a good indicator of toxicity (Coombes and Lepp 1974) although it did not happen with 

anthracene and M. polymorpha. On the other hand, the experiments coincide with those of 

Carginale et al. (2004) who observed that the germination of propagules  of M. polymorpha 

is has a particular resistance towards contaminants, which indicates  low resolution of this 

parameter as a general bioindicator of toxicity. 

 

M. polymorpha growth in the presence of anthracene 

 After each propagule was germinated, plant growth was followed until day 30. The 

contaminant altered the development of the plants, which showed irregular growth 

patterns. Growth was inhibited for plants exposed to anthracene at 560 µM (data not 

shown). Anthracene induced “rosette” growth morphology and a decrease in biomass (as 

dry weight) with respect to the controls (Fig. 1.2). The differences were significant (p = 

0.000062; F = 18.02) for the plants grown at 100 µM and 280 µM (Fig. 1). Although the 

production of propagula was not observed in 50 and 100 µM treatments, plants exposed to 

280 µM produced viable propagules in gemmae cups, which were evident after 30 days.  
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 Although published research about the effects of anthracene in bryophytes is 

scarce, which made difficult the discussion of some of the results, the toxicity effects of 

PAHs in vascular plants span a wide range of research. These compounds induce stress 

responses such as growth reduction of the root and shot via inhibition of cell division and 

elongation; chlorosis; necrosis; and oxidative stress indicators, like production of H2O2, 

programmed cell death and hypersensitive response-like symptoms (Maliszewska-

Kordybach and Smreczak, 2000; Alkio et al., 2005). In the present study, plants exposed 

to anthracene were shown to be less developed than controls and with a “rosette” 

appearance which indicates that the contaminant could be inducing alterations to the 

meristem at the base of the heart-shaped slit (apical notch) at the apex of the thallus. In 

that regard, M. polymorpha exhibit altered growth and morphology in the presence of PAH, 

as a regular stress response-like symptom observed in vascular plant, Arabidopsis 

thaliana (Akio et al., 2005). 

Anthracene uptake by M. polymorpha 

The measurements obtained by fluorescence microscopy after 30 days of cultivation 

showed an increase of fluorescent emission at ~ 420 µm under UV excitation on the cell 

walls of plants grown in the presence of 100 µM and 280 µM of anthracene, suggesting 

the incorporation of the contaminant (Fig. 2.1) (p = 0; F = 51.141). Although lignin is also 

fluorescent, as many other molecules with aromatic components under UV irradiation, we 

considered the increase in the emission as a consequence of the anthracene 

incorporation, as it has also been described in other studies in vascular plants (Alves et al., 

2017; Aranda et al., 2013). Although we cannot confirm that anthracene was transport to 

plant tissue along apoplastic and symplastic pathways, there is evidence that in 

bryophytes, the transport route of nutrients and contaminants is apoplastic, following the 

same route as the circulation of water (Giordano et al., 1989; Carginale et al., 2004). 
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Therefore, nutrients and pollutants are in direct contact with cells and its absorption could 

occur directly as observed by Harms (1992), who exposed intact cells of plants and cell 

cultures to another type of PAH (dibenz[a,h]anthracene). It is then possible that at least 

part of the anthracene is accumulating in the cell walls, as suggested by epifluorescence 

images of plants exposed to 100 µM and 280 µM of anthracene (2.2 and 2.3). In M. 

polymorpha, the anthracene transported from the substrate to the cell walls could be 

available for passive and active internalisation. The mechanisms are still unknown, 

although they could be similar to those described for vascular plants (Zhan et al., 2012). 

 

Effect of anthracene on the chlorophyll content index (CCI) 

 In order to establish whether the decrease in biomass was caused by an alteration 

in photosynthetic processes, CCI was measured. The index decreased (p = 0.000007; F = 

51) when the plants were exposed to concentrations higher than 100 µM with respect to 

the controls (Fig. 3.1). The chlorophyll content is a known and accepted bioindicator of the 

presence of stressors or contaminants, and it is predictive, to some extent, of plant toxicity 

(Marwood et al., 2001). The CCI decreased with increasing anthracene concentrations. 

This experimental result allowed explaining the observed change in the development and 

growth of the plants. This supports one mechanism of PAH toxicity in which damage to 

essential cellular components leads to photosynthetic pigments catalysis (Marwood et al., 

2001), so energy would be deviated to the maintenance of the photosynthetic apparatus, 

which would therefore affect biomass production. The difference in growth and 

photosynthetic pigment content could be a consequence of the energy consumption by the 

thalli asexual reproduction (Glime, 2017). 
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 The unusual morphology patterns, the differences in biomass production and the 

decrease in CCI, at least in our experimental conditions, could be related to the ability of 

M. polymorpha to incorporate and deposit appreciable amounts of anthracene into the cell 

walls. Harvey et al. (2002) proposed that the stabilisation of the contaminant in these 

structures confers tolerance to the plant, although symptoms of stress were registered. 

Moreover, in addition to stress, the above mentioned symptoms could be a consequence 

of the deviation of energy to the production of gemmae cups with propagules, which was 

observed solely in the specimens exposed to PAH (fig 3.2). This is a unique characteristic 

amongst terrestrial plants (Wyatt, 1994). In this sense, some liverworts are known to 

reproduce asexually as an adaptive advantage to environmental stress. In many cases it is 

the environment that determines the reproductive strategy of some species. In this case, 

the production of fertile gemmae cups of M. polymorpha under PAH stress could be 

interpreted as an effective means for population growth and maintenance. Indeed, the 

present study supports the hypothesis that asexual reproduction is vital for population 

survival under stressful environmental conditions (Longton and Schuster, 1983; Kimmerer, 

1991; Crow, 1994). 

Conclusion 

 Marchantia polymorpha is tolerant to concentrations of anthracene up to 280 µM. 

The contaminant produces alterations of the chlorophyll content that could be related to 

the decrease of the growth and the alterations in the growth. However the plant is also 

able to transport the contaminant from the substrate through the apoplast, to incorporate it 

into the cell walls. The differences in the monitored morphological and physiological 

parameters and the production of asexual structures are signals of abiotic stress induced 

by anthracene; on the other hand, they are also signals of the adaptive advantages of the 

organism to this type of condition. Further research is needed to understand the 
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mechanism of anthracene toxicity, the tolerance of this species and its potential role in 

phytorremediation processes. 
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Figure caption 

 

Figure 1. a) 1.1 Dry weight of M. polymorpha (mg) grown during 30 days in the presence 

of anthracene (0, 50, 100 and 280 µM). Data represent the mean of four replicates per 

treatment. Error bars denote standard deviation. Values with the same letter are not 

significantly different between treatments (p ≤ 0.05), as determined by Tukey's test. b) 1.2 

Image of M. polymorpha grown in M medium with and without 280 µM anthracene. 

 

Figure 2. 2.1 Fluorescence intensity (Absorbance Units A.U.) of M. polymorpha grown 

during 30 days in the presence of anthracene (0, 50, 100 and 280 µM). Data represent the 

mean of four replicates per treatment. Values with the same letter are not significantly 

different between treatments (p ≤ 0.05), as determined by Tukey's HSD test. Vertical bars 

denote standard deviation. Fluorescence micrograph of a control plant (2.2) and a plant 

exposed to 280 µM of anthracene (2.3). Scale bars= 10 µm. Differences in the blue light 

intensity indicate the presence of anthracene. 

 

Figure 3.1 The chorophyll content index (CCI) of M. polymorpha plants treated with 0, 50, 

100 and 280 µM of anthracene. Data represent the mean of four replicates per treatment. 

Values with the same letter are not significantly different between treatments (p ≤ 0.05), as 

determined by Tukey's HSD test. Vertical bars denote standard deviation. 3.2 The arrows 

in the figure indicate the Gemma cup containing viable propagules following exposure to 

280 µM of anthracene. Scale bars= 5 mm. 
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Highlights  

 

Liverworts plants are tolerant to anthracene. 

 

Anthracene is detected in Marchantia polymorpha the cell walls. 

 

Anthracene alters chlorophyll content, biomass and plant morphology.  

 

Asexual reproduction structures are related to stress induced by contamination 
with anthracene.  
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