50 research outputs found

    Characterization of Five New Monosporascus Species: Adaptation to Environmental Factors, Pathogenicity to Cucurbits and Sensitivity to Fungicides

    Full text link
    [EN] In this study, five new recently described Monosporascus species, M. brasiliensis, M. caatinguensis, M. mossoroensis, M. nordestinus, and M. semiaridus, which were found on weeds collected from cucurbit cultivation fields in northeastern Brazil, are characterized regarding mycelial growth at different pH levels and salinity (NaCl) concentrations, their pathogenicity to selected cucurbit species, and their sensitivity to fungicides with different modes of action. Our results reveal great variability among the representative isolates of each Monosporascus spp. All of them showed a wide range of tolerance to different pH levels, and NaCl significantly reduced their in vitro mycelial growth, although no concentration was able to inhibit them completely. In pathogenicity tests, all seedlings of cucurbits evaluated, melon, watermelon, cucumber, and pumpkin, were susceptible to the five Monosporascus spp. In greenhouse experiments using artificial inoculation of roots. Moreover, all Monosporascus spp. were highly susceptible to the fungicides fludioxonil and fluazinam. Our findings provide relevant information about the response of these new Monosporascus spp. to environmental factors, plant genotypes and fungicides.Cavalcante, ALA.; Negreiros, AMP.; Tavares, MB.; Barreto, ÉDS.; Armengol Fortí, J.; Júnior, RS. (2020). Characterization of Five New Monosporascus Species: Adaptation to Environmental Factors, Pathogenicity to Cucurbits and Sensitivity to Fungicides. Journal of Fungi. 6(3):1-14. https://doi.org/10.3390/jof603016911463Martyn, R. D. (1996). Monosporascus Root Rot and Vine Decline: An Emerging Disease of Melons Worldwide. Plant Disease, 80(7), 716. doi:10.1094/pd-80-0716Cohen, R., Pivonia, S., Crosby, K. M., & Martyn, R. D. (2012). Advances in the Biology and Management of Monosporascus Vine Decline and Wilt of Melons and Other Cucurbits. Horticultural Reviews, 77-120. doi:10.1002/9781118100592.ch2Salem, I. B., Correia, K. C., Boughalleb, N., Michereff, S. J., León, M., Abad-Campos, P., … Armengol, J. (2013). Monosporascus eutypoides, a Cause of Root Rot and Vine Decline in Tunisia, and Evidence that M. cannonballus and M. eutypoides Are Distinct Species. Plant Disease, 97(6), 737-743. doi:10.1094/pdis-05-12-0464-reSales, R., Bezerra do Nascimento, I. J., de Souza Freitas, L., Beltrán, R., Armengol, J., Vicent, A., & García-Jiménez, J. (2004). First Report of Monosporascus cannonballus on Melon in Brazil. Plant Disease, 88(1), 84-84. doi:10.1094/pdis.2004.88.1.84bSales, R., Santana, C. V. S., Nogueira, D. R. S., Silva, K. J. P., Guimarães, I. M., Michereff, S. J., … Armengol, J. (2010). First Report of Monosporascus cannonballus on Watermelon in Brazil. Plant Disease, 94(2), 278-278. doi:10.1094/pdis-94-2-0278bYan, L. Y., Zang, Q. Y., Huang, Y. P., & Wang, Y. H. (2016). First Report of Root Rot and Vine Decline of Melon Caused by Monosporascus cannonballus in Eastern Mainland China. Plant Disease, 100(3), 651-651. doi:10.1094/pdis-06-15-0655-pdnMarkakis, E. A., Trantas, E. A., Lagogianni, C. S., Mpalantinaki, E., Pagoulatou, M., Ververidis, F., & Goumas, D. E. (2018). First Report of Root Rot and Vine Decline of Melon Caused by Monosporascus cannonballus in Greece. Plant Disease, 102(5), 1036-1036. doi:10.1094/pdis-10-17-1568-pdnNegreiros, A. M. P., Júnior, R. S., Rodrigues, A. P. M. S., León, M., & Armengol, J. (2019). Prevalent weeds collected from cucurbit fields in Northeastern Brazil reveal new species diversity in the genusMonosporascus. Annals of Applied Biology, 174(3), 349-363. doi:10.1111/aab.12493Porras-Alfaro, A., Herrera, J., Sinsabaugh, R. L., Odenbach, K. J., Lowrey, T., & Natvig, D. O. (2008). Novel Root Fungal Consortium Associated with a Dominant Desert Grass. Applied and Environmental Microbiology, 74(9), 2805-2813. doi:10.1128/aem.02769-07Herrera, J., Khidir, H. H., Eudy, D. M., Porras-Alfaro, A., Natvig, D. O., & Sinsabaugh, R. L. (2010). Shifting fungal endophyte communities colonize Bouteloua gracilis: effect of host tissue and geographical distribution. Mycologia, 102(5), 1012-1026. doi:10.3852/09-264Dean, S. L., Warnock, D. D., Litvak, M. E., Porras-Alfaro, A., & Sinsabaugh, R. (2015). Root-associated fungal community response to drought-associated changes in vegetation community. Mycologia, 107(6), 1089-1104. doi:10.3852/14-240Robinson, A. J., Natvig, D. O., & Chain, P. S. G. (2020). Genomic Analysis of Diverse Members of the Fungal Genus Monosporascus Reveals Novel Lineages, Unique Genome Content and a Potential Bacterial Associate. G3 Genes|Genomes|Genetics, 10(8), 2573-2583. doi:10.1534/g3.120.401489Martyn, R. D. (2002). Monosporascus Root Rot and Vine Decline of Melons (MRR/VD). Also referred to as sudden wilt, sudden death, melon collapse, Monosporascus wilt, and black pepper root rot. The Plant Health Instructor. doi:10.1094/phi-i-2002-0612-01Pivonia, S., Cohen, R., Kigel, J., & Katan, J. (2002). Effect of soil temperature on disease development in melon plants infected by Monosporascus cannonballus. Plant Pathology, 51(4), 472-479. doi:10.1046/j.1365-3059.2002.00731.xWaugh, M. M., Kim, D. H., Ferrin, D. M., & Stanghellini, M. E. (2003). Reproductive Potential of Monosporascus cannonballus. Plant Disease, 87(1), 45-50. doi:10.1094/pdis.2003.87.1.45Armengol, J., Alaniz, S., Vicent, A., Beltrán, R., Abad-Campos, P., Pérez-Sierra, A., … Boughalleb, N. (2011). Effect of dsRNA on growth rate and reproductive potential of Monosporascus cannonballus. Fungal Biology, 115(3), 236-244. doi:10.1016/j.funbio.2010.12.007Correia, K. C., Silva, E. K. C., Câmara, M. P. S., Sales Jr., R., Mizubuti, E. S. G., Armengol, J., … Michereff, S. J. (2014). Fitness components of Monosporascus cannonballus isolates from northeastern Brazilian melon fields. Tropical Plant Pathology, 39(3), 217-223. doi:10.1590/s1982-56762014000300005Rhouma, A., Salem, I. B., M’hamdi, M., & Boughalleb-M’Hamdi, N. (2018). Relationship study among soils physico-chemical properties and Monosporascus cannonballus ascospores densities for cucurbit fields in Tunisia. European Journal of Plant Pathology, 153(1), 65-78. doi:10.1007/s10658-018-1541-5Mertely, J. C. (1993). An Expanded Host Range for the Muskmelon PathogenMonosporascus cannonballus. Plant Disease, 77(7), 667. doi:10.1094/pd-77-0667Sales Júnior, R., Balbino, D. A. D., Negreiros, A. M. P., Barboza, H. da S., de Medeiros, E. V., & Armengol, J. (2018). Cotton, cowpea and sesame are alternative crops to cucurbits in soils naturally infested with Monosporascus cannonballus. Journal of Phytopathology, 166(6), 396-402. doi:10.1111/jph.12698Pivonia, S., Gerstl, Z., Maduel, A., Levita, R., & Cohen, R. (2010). Management of Monosporascus sudden wilt of melon by soil application of fungicides. European Journal of Plant Pathology, 128(2), 201-209. doi:10.1007/s10658-010-9644-7Awad, H. M. (2016). Evaluation of Plant Extracts and Essential Oils for the Control of Sudden Wilt Disease of Watermelon Plants. International Journal of Current Microbiology and Applied Sciences, 5(5), 949-962. doi:10.20546/ijcmas.2016.505.100Sales Júnior, R., Senhor, R. F., Michereff, S. J., & Medeiros, E. V. (2017). Influência da adubação verde no declínio de monosporascus em solo naturalmente infestado. Horticultura Brasileira, 35(1), 135-140. doi:10.1590/s0102-053620170121Cohen, R., Pivonia, S., Shtienberg, D., Edelstein, M., Raz, D., Gerstl, Z., & Katan, J. (1999). Efficacy of Fluazinam in Suppression of Monosporascus cannonballus, the Causal Agent of Sudden Wilt of Melons. Plant Disease, 83(12), 1137-1141. doi:10.1094/pdis.1999.83.12.1137Cervantes-Garcia, D., Saul Padilla-Ramirez, J., Simpson, J., & Mayek-Perez, N. (2003). Osmotic Potential Effects on In Vitro Growth, Morphology and Pathogenicity of Macrophomina phaseolina. Journal of Phytopathology, 151(7-8), 456-462. doi:10.1046/j.1439-0434.2003.00751.xAegerter, B. J., Gordon, T. R., & Davis, R. M. (2000). Occurrence and Pathogenicity of Fungi Associated with Melon Root Rot and Vine Decline in California. Plant Disease, 84(3), 224-230. doi:10.1094/pdis.2000.84.3.224Francisco, de A. S. e S., & Carlos, A. V. de A. (2016). The Assistat Software Version 7.7 and its use in the analysis of experimental data. African Journal of Agricultural Research, 11(39), 3733-3740. doi:10.5897/ajar2016.11522Tonin, R. F. B., Avozani, A., Danelli, A. L. D., Reis, E. M., Zoldan, S. M., & Garcés-Fiallos, F. R. (2013). In vitro mycelial sensitivity of Macrophomina phaseolina to fungicides. Pesquisa Agropecuária Tropical, 43(4), 460-466. doi:10.1590/s1983-40632013000400014Negreiros, A. M. P., Melo, N. J. de A., Medeiros, H. L. de S., Silva, F. H. A., Armengol, J., & Sales Júnior, R. (2020). Characterization of adaptability components of Brazilian isolates of Macrophomina pseudophaseolina. Journal of Phytopathology, 168(7-8), 490-499. doi:10.1111/jph.12927Thangavelu, V., Tang, J., Ryan, D., & Valix, M. (2006). Effect of saline stress on fungi metabolism and biological leaching of weathered saprolite ores. Minerals Engineering, 19(12), 1266-1273. doi:10.1016/j.mineng.2006.02.007Castro, G., Perpiñá, G., Esteras, C., Armengol, J., Picó, B., & Pérez‐de‐Castro, A. (2020). Resistance in melon to Monosporascus cannonballus and M. eutypoides  : Fungal pathogens associated with Monosporascus root rot and vine decline. Annals of Applied Biology, 177(1), 101-111. doi:10.1111/aab.12590Edgington, L. V. (1971). Fungitoxic Spectrum of Benzimidazole Compounds. Phytopathology, 61(1), 42. doi:10.1094/phyto-61-4

    Diversidade e métodos de amostragem de Hymenoptera na cultura da melancia no semiárido

    Get PDF
    The aims of this study were to identify the Hymenoptera fauna associated with watermelon crops and assess the influence of Pitfall, Moericke and McPhail traps in capturing these insects in the semiarid environment of the state of Rio Grande do Norte, Brazil. The survey was conducted between the months of August and September, 2011, in a commercial watermelon cv Crimson Sweet production area. The collection of the Hymenoptera was conducted weekly during the crop cycle. To capture the insects, three types of traps were used, Pitfall, Moericke and McPhail, in densities 20, 20 and 1 trap per hectare, respectively. The traps were installed seven days after seeding and maintained in the area until harvest. A total of 3,123 Hymenoptera were collected, belonging to 10 superfamilies, and 24 families. Formicidae was the most representative, with a total relative abundance of 54.43%, followed by Apidae with 17.96%. The presence of 18 families of parasitoids (18.89%) was also observed, notably Platygastridae (6.60%), Encyrtidae (2.79%), Chalcididae (2.56%), Mymaridae (2.56%), Pompilidae (1.15%) and Trichogrammatidae (1.09%). The occurrence of predators from the families Crabronidae (6.34 %), Vespidae (2.24 %) and Sphecidae (0.10%) is noteworthy. Among the traps, Moericke captured the greatest diversity of Hymenoptera (24 families), followed by Pitfall (11 families) and McPhail (seven families) traps. © 2016, Sociedade de Olericultura do Brasil. All rights reserved

    Reação de genótipos de meloeiro a Myrothecium

    Get PDF
    A expansão da cultura do meloeiro (Cucumis melo L.) no Nordeste brasileiro tem favorecido a ocorrência de doenças como o cancro-de-mirotécio, causado pelo fungo Myrothecium roridum. Visando selecionar genótipos com potencial de utilização nos programas de melhoramento e/ou no manejo integrado da doença, foram avaliados 150 genótipos de meloeiro. Plantas com 22 dias de idade, desenvolvidas em casa de vegetação, foram feridas no colo e inoculadas com uma suspensão do patógeno (3x10(6) conídios/ml). As avaliações foram realizadas diariamente, até seis dias após a retirada da câmara úmida, com o auxílio de uma escala descritiva de notas de 0 a 4. Com os dados da última avaliação, os genótipos foram distribuídos em cinco classes de reação à doença. Nenhum genótipo foi imune ou altamente resistente ao patógeno, enquanto 26,7% foram medianamente resistentes (MR) e 73,3% foram suscetíveis (S) ou altamente suscetíveis (AS). Esses resultados evidenciam a dificuldade na obtenção de fontes com elevados níveis de resistência a M. roridum. Os grupos Cantaloupe, Charentais, Gália e 'Indefinido' apresentaram a maior freqüência de genótipos com a reação MR e a menor freqüência de genótipos AS. A maioria dos genótipos dos grupos Valenciano Verde (66,7%), Cantaloupe (57,4%), Gália (60,0%) e 'Indefinido' (53,8%) foram S. Os genótipos 'PI 420149', 'Caroline', 'A3', 'Chilton' e 'PS-1 Pele de Sapo' apresentaram os menores valores de severidade final da doença e mostraram-se promissoras fontes de resistência ao patógeno e devem ser preferidos sob condições favoráveis à doença

    Population structure of Monosporascus cannonballus isolates from melons produced in Northeastern Brazil based on mycelial compatibility groups

    Full text link
    [EN] The population structure of Monosporascus cannonballus, which causes vine decline in melons, was assessed based on the determination of mycelial compatibility groups (MCGs) in a collection of 58 isolates obtained from seven melon fields in three municipalities of Northeastern Brazil. For comparison, an additional 11 isolates of M. cannonballus from Spain were included in the analysis. MCGs were determined through comparisons of paired isolates growing on PDA culture media in the dark at 30ºC in various combinations. The Brazilian isolates were assigned into four MCGs: MCG-1 (n = 35 isolates), MCG-2 (n = 20), MCG-3 (n = 2), and MGC-4 (n = 1). MCG-1 and MCG-2 included isolates from all surveyed areas. The Spanish isolates were assigned into six different MCGs, and none of them were compatible with the Brazilian isolates. The genetic structure was determined using the frequencies of MCGs and genotypic diversity indices. The maximum genotypic diversity was 6.9 and 54.5% for the Brazilian and Spanish populations, respectively. The low level of genetic diversity in the M. cannonballus population from Northeastern Brazil suggests that breeding melons for disease resistance may be a promising strategy for the region.This research was partially funded by CAPES (Project 203/2009 - International Cooperation CAPES-Brazil/DGU-Spain). We are thankful CNPq for the research fellowships granted to C. S. Bezerra, M. P. S. Camara, R. Sales Junior and S.J. Michereff. We thank Prof. Eduardo S. G. Mizubuti, Universidade Federal de Vicosa, Vicosa, Minas Gerais State, Brazil, for useful advice on data analyses.De Souza Bezerra, C.; Câmara Correia, K.; Saraiva Câmara, MP.; Sales Júnior, R.; Armengol Fortí, J.; Michereff, SJ. (2013). Population structure of Monosporascus cannonballus isolates from melons produced in Northeastern Brazil based on mycelial compatibility groups. Acta Scientiarum. Agronomy. 35(2):161-167. https://doi.org/10.4025/actasciagron.v35i2.15182S16116735
    corecore