132 research outputs found

    A Review of Hybrid Humidification and Dehumidification Desalination Systems

    Get PDF
    The escalating threat of water scarcity, coupled with the inclusion of numerous countries in the list of water-scarce nations, has elevated the issue of water availability to a paramount concern in today\u27s global landscape. Freshwater sources are becoming increasingly scarce, with their proportional decline steadily progressing. Consequently, a growing number of nations have resorted to the desalination of seawater as a viable solution. In response to this critical need, a surge of studies and research endeavors has been dedicated to the development and refinement of desalination processes. One of the most promising innovations in this field is Humidification-Dehumidification (HDH) desalination technology. This paper aims to delve into the potential of HDH desalination technology and its integration with another advanced desalination method known as a hybrid system. By combining these two distinct approaches, it becomes possible to not only enhance productivity but also address certain limitations inherent in each technology. In this paper, we provide an overview of various desalination processes, shedding light on their classifications and characteristics. Our primary focus, however, lies in exploring how HDH desalination technology can be effectively harmonized within a hybrid system to maximize efficiency and mitigate shortcomings observed in individual technologies. The integration of HDH with existing desalination methods has demonstrated notable success, as evidenced by numerous research studies in the field. This research underscores the significance of hybridization in advancing HDH sustainability practices within the desalination sector, ultimately contributing to the global effort to combat water scarcity

    A Review of Hybrid Humidification and Dehumidification Desalination Systems

    Get PDF
    The escalating threat of water scarcity, coupled with the inclusion of numerous countries in the list of water-scarce nations, has elevated the issue of water availability to a paramount concern in today\u27s global landscape. Freshwater sources are becoming increasingly scarce, with their proportional decline steadily progressing. Consequently, a growing number of nations have resorted to the desalination of seawater as a viable solution. In response to this critical need, a surge of studies and research endeavors has been dedicated to the development and refinement of desalination processes. One of the most promising innovations in this field is Humidification-Dehumidification (HDH) desalination technology. This paper aims to delve into the potential of HDH desalination technology and its integration with another advanced desalination method known as a hybrid system. By combining these two distinct approaches, it becomes possible to not only enhance productivity but also address certain limitations inherent in each technology. In this paper, we provide an overview of various desalination processes, shedding light on their classifications and characteristics. Our primary focus, however, lies in exploring how HDH desalination technology can be effectively harmonized within a hybrid system to maximize efficiency and mitigate shortcomings observed in individual technologies. The integration of HDH with existing desalination methods has demonstrated notable success, as evidenced by numerous research studies in the field. This research underscores the significance of hybridization in advancing HDH sustainability practices within the desalination sector, ultimately contributing to the global effort to combat water scarcity

    A comparative study of high-field diamagnetic fluctuations in deoxygenated YBa2Cu3O(7-x) and polycrystalline (Bi-Pb)2Sr2Ca3O(10)

    Full text link
    We studied three single crystals of YBa2Cu3O{7-x} with Tc= 62.5, 52, and 41 K, and a textured specimen of (Bi-Pb)2Sr2Ca2Cu3O10 with Tc=108 K, for H//c axis. The reversible data were interpreted in terms of 2D lowest-Landau-level fluctuation theory. The data were fit well by the 2D LLL expression for magnetization obtained by Tesanovic etal., producing reasonable values of kappa but larger values of dHc2/dT. Universality was studied by obtaining a simultaneous scaling of Y123 data and Bi2223. An expression for the 2D x-axis LLL scaling factor used to obtain the simultaneous scaling was extracted from theory, and compared with the experimental values. The comparison between the values of the x-axis produced a deviation of 40% which suggests that the hypothesis of universality of the 2D-LLL fluctuations is not supported by the studied samples. We finaly observe that Y123 magnetization data for temperatures above TcT_c obbey a universal scaling obtained for the diamagnetic fluctuation magnetization from a theory considering non-local field effects. The same scaling was not obbeyed by the corresponding magnetization calculated from the two-dimensional lowest-Landau-level theory.Comment: 7 pages 5 figures, accept in Journ. Low Temp. Phy

    Digestion, growth performance and caecal fermentation in growing rabbits fed diets containing foliage of browse trees

    Full text link
    [EN] This study aimed to evaluate the effect of feeding dried foliage (leaves and petioles) of Acacia saligna, Leucaena leucocephala or Moringa oleifera on the performance, digestibility, N utilisation, caecal fermentation and microbial profiles in New Zealand White (NZW) rabbits. One hundred weaned male NZW rabbits weighing 819.2±16.6 g and aged 35±1 d were randomly allocated into 4 groups of 25 rabbits each. Rabbits were fed on pelleted diets containing 70% concentrate mixture and 30% Egyptian berseem (Trifolium alexandrinum) hay (Control diet) or one of the other 3 experimental diets, where 50% of berseem hay was replaced with A. saligna (AS), L. leucocephala (LL) or M. oleifera (MO). Compared to Control diet, decreases in dry matter (DM; P=0.004), organic matter (P=0.028), crude protein (CP; P=0.001), neutral detergent fibre (P=0.033) and acid detergent fibre (P=0.011) digestibility were observed with the AS diet. However, DM and CP digestibility were increased by 3% with the MO diet, and N utilisation was decreased (P<0.05) with AS. Rabbits fed AS and LL diets showed decreased (P=0.001) average daily gain by 39 and 7%, respectively vs. Control. Feed conversion was similar in Control and MO rabbits, whereas rabbits fed AS diet ate up to 45% more feed (P=0.002) than Control rabbits to gain one kg of body weight. Caecal ammonia-N was increased (P=0.002) with LL, while acetic acid was decreased (P=0.001) with AS diet vs. other treatments. Caecal E. coli and Lactobacillus spp. bacteria counts were decreased with MO by about 44 and 51%, respectively, vs. Control. In conclusion, under the study conditions, tree foliage from M. oleifera and L. leucocephala are suitable fibrous ingredients to be included up to 150 g/kg in the diets of growing rabbits, and can safely replace 50% of berseem hay in diets of NZW rabbits without any adverse effect on their growth performance. Foliage from M. oleifera had a better potential as a feed for rabbits than that from L. leucocephala. Although foliage from A. saliga may be also used at 150 g/kg in the diets of growing rabbits, this level of inclusion may result in reduced feed digestibility and growth performance.Abu Hafsa, S.; Salem, A.; Hassan, A.; Kholif, A.; Elghandour, M.; Barbabosa, A.; Lopez, S. (2016). Digestion, growth performance and caecal fermentation in growing rabbits fed diets containing foliage of browse trees. World Rabbit Science. 24(4):283-293. doi:10.4995/wrs.2016.4359.SWORD28329324

    Pharmacological, nutritional and antimicrobial uses of Moringa oleifera Lam. leaves in poultry nutrition: An updated knowledge

    Get PDF
    Recently, developing countries have focused on using innovative feed in poultry nutrition. The plant Moringa oleifera is native to India but grows worldwide in tropical and subtropical climates. Moringa is planted on a large scale as it can tolerate severe dry and cold conditions. All parts of this plant can be used for commercial or nutritional purposes, and it has a favorable nutritional profile. Beneficial phytochemicals, minerals, and vitamins are abundant in the leaves. The leaf extracts can be used to treat malnutrition; they also possess anticancer, antioxidant, antidiabetic, antibacterial, and anti-inflammatory properties. Further, moringa contains antinutritional substances, such as trypsin inhibitors, phytates, tannins, oxalates, cyanide, and saponins, which have a harmful effect on mineral and protein metabolism. Previous research suggested that including moringa in chicken diets boosts their growth and productivity. Therefore, this review focuses on the characterization and application of M. oleifera in poultry nutrition and its potential toxicity. Furthermore, we discuss the nutritional content, phytochemicals, and antioxidants of M. oleifera leaf meal and its applicability in poultry rations

    Hot red pepper powder as a safe alternative to antibiotics in organic poultry feed: An updated review

    Get PDF
    Globally, several studies have investigated the utilization and efficacy of promising medicinal herbal plants to enhance livestock and poultry production. The most commonly investigated phytobiotics in broiler ration were oregano, garlic, thyme, rosemary, black pepper, hot red pepper (HRP), and sage. Phytobiotics are classified on the basis of the medicinal properties of plants, their essential oil extracts, and their bioactive compounds. The majority of bioactive compounds in plants are secondary metabolites, such as terpenoids, phenolic, glycosides, and alkaloids. The composition and concentrations of these bioactive constitutes vary according to their biological factors and manufacturing and storage conditions. Furthermore, HRP is one of the most important and widely used spices in the human diet. Capsicum annum, that is, HRP, is a species of the plant genus Capsicum (pepper), which is a species native to southern North America and northern South America and is widely grown and utilized for its fresh or cooked fruits. Moreover, these fruits may be used as dried powders or processed forms of oleoresins. Researches have proven that C. annuum is the only plant that produces the alkaloid capsaicinoids. Approximately 48% of its active substances are capsaicin (8-methyl-N-vanillyl-6-nonemide), the main active compound responsible for the intense effects of HRP varieties and the main component inducing the hot flavor. This review aimed to highlight the effects of HRP as a phytobiotic in broiler nutrition and its mode of action as a possible alternative to antibiotics and clarify its impact on broiler and layer productivity

    The relationship among avian influenza, gut microbiota and chicken immunity: An updated overview

    Get PDF
    The alimentary tract in chickens plays a crucial role in immune cell formation and immune challenges, which regulate intestinal flora and sustain extra-intestinal immunity. The interaction between pathogenic microorganisms and the host commensal microbiota as well as the variety and integrity of gut microbiota play a vital role in health and disease conditions. Thus, several studies have highlighted the importance of gut microbiota in developing immunity against viral infections in chickens. The gut microbiota (such as different species of Lactobacillus, Blautia Bifidobacterium, Faecalibacterium, Clostridium XlVa, and members of firmicutes) encounters different pathogens through different mechanisms. The digestive tract is a highly reactive environment, and infectious microorganisms can disturb its homeostasis, resulting in dysbiosis and mucosal infections. Avian influenza viruses (AIV) are highly infectious zoonotic viruses that lead to severe economic losses and pose a threat to the poultry industry worldwide. AIV is a challenging virus that affects gut integrity, disrupts microbial homeostasis and induces inflammatory damage in the intestinal mucosa. H9N2 AIV infection elevates the expression of proinflammatory cytokines, such as interferon (IFN-γ and IFNα) and interleukins (IL-17A and IL-22), and increases the proliferation of members of proteobacteria, particularly Escherichia coli. On the contrary, it decreases the proliferation of certain beneficial bacteria, such as Enterococcus, Lactobacillus and other probiotic microorganisms. In addition, H9N2 AIV decreases the expression of primary gel-forming mucin, endogenous trefoil factor family peptides and tight junction proteins (ZO-1, claudin 3, and occludin), resulting in severe intestinal damage. This review highlights the relationship among AIV, gut microbiota and immunity in chicken

    Phytochemical control of poultry coccidiosis: A review

    Get PDF
    Avian coccidiosis is a major parasitic disorder in chickens resulting from the intracellular apicomplexan protozoa Eimeria that target the intestinal tract leading to a devastating disease. Eimeria life cycle is complex and consists of intra- and extracellular stages inducing a potent inflammatory response that results in tissue damage associated with oxidative stress and lipid peroxidation, diarrheal hemorrhage, poor growth, increased susceptibility to other disease agents, and in severe cases, mortality. Various anticoccidial drugs and vaccines have been used to prevent and control this disorder; however, many drawbacks have been reported. Drug residues concerning the consumers have directed research toward natural, safe, and effective alternative compounds. Phytochemical/herbal medicine is one of these natural alternatives to anticoccidial drugs, which is considered an attractive way to combat coccidiosis in compliance with the “anticoccidial chemical-free” regulations. The anticoccidial properties of several natural herbal products (or their extracts) have been reported. The effect of herbal additives on avian coccidiosis is based on diminishing the oocyst output through inhibition or impairment of the invasion, replication, and development of Eimeria species in the gut tissues of chickens; lowering oocyst counts due to the presence of phenolic compounds in herbal extracts which reacts with cytoplasmic membranes causing coccidial cell death; ameliorating the degree of intestinal lipid peroxidation; facilitating the repair of epithelial injuries; and decreasing the intestinal permeability induced by Eimeria species through the upregulation of epithelial turnover. This current review highlights the anticoccidial activity of several herbal products, and their other beneficial effects
    corecore